
DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 1

PART-I

(Basics of DBMS)

Meaning of DBMS:
A database-management system (DBMS) is a collection of interrelated

data and a set of programs to access those data. The collection of data, usually
referred to as the database, contains information relevant to an enterprise. By
data, we mean known facts that can be recorded and that have implicit meaning.
For example, consider the names, telephone numbers, and addresses of the
people you know.

Basic meaning, operation applied on Database:
- Constructing the database is the process of storing the data itself on some

storage medium that is controlled by the DBMS.
- Defining a database involves specifying the data types, structures, and

constraints for the data to be stored in the database.
- Manipulating a database includes such functions as querying the database

to retrieve specific data, updating the database to reflect changes in the
mini world, and generating reports from the data.

- Sharing a database allows multiple users and programs to access the
database concurrently.

Other important functions provided by the DBMS:
It includes protecting the database and maintaining it over a long period

of time. Protection includes both system protection against hardware or software
malfunction (or crashes), and security protection against unauthorized or
malicious access.

The DBMS is hence a general-purpose software system that facilitates the
processes of defining, constructing, manipulating, and sharing databases among
various users and applications.

To complete our initial definitions, we will call the database and DBMS
software together a database system.

The primary goal of a DBMS:
DBMS is to provide a way to store and retrieve database information that

is both convenient and efficient.
Database systems are designed to manage large bodies of information.

Management of data involves both defining structures for storage of information
and providing mechanisms for the manipulation of information.

Additional Features of DBMS:
In addition, the database system must ensure the safety of the information

stored, despite system crashes or attempts at unauthorized access. If data are to

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

be shared among several users, the System must avoid possible anomalous
results.

Database System Applications:
Databases are widely used. Here are some representative applications:

• Banking: For customer information, accounts, and loans, and banking
transactions.
• Airlines: For reservations and schedule information.
• Universities: For student information, course registrations, and grades.
• Credit card transactions: For purchases on credit cards and generation of
monthly statements.
• Telecommunication: For keeping records of calls made, generating monthly
bills, maintaining balances on prepaid calling cards, and storing information
about the communication networks.
• Finance: For storing information about holdings, sales, and purchases of
financial instruments such as stocks and bonds.
• Sales: For customer, product, and purchase information.
• Manufacturing: For management of supply chain and for tracking production
of items in factories, inventories of items in warehouses/stores, and orders for
items.
• Human resources: For information about employees, salaries, payroll taxes
and benefits, and for generation of paychecks.

A simplified database system environment:

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 3

Database Systems versus File Systems:

The file-processing system is supported by a conventional operating

system. The system stores permanent records in various files, and it needs
different application programs to extract records from, and add records to, the
appropriate files. Before database management systems (DBMSs) came along,
organizations usually stored information in such systems.
Ex: Consider part of a savings-bank enterprise that keeps information about all
customers and savings accounts. One way to keep the information on a
computer is to store it in operating system files. To allow users to manipulate
the information, the system has a number of application programs that
manipulate the files, including
• A program to debit or credit an account
• A program to add a new account
• A program to find the balance of an account
• A program to generate monthly statements

System programmers wrote these application programs to meet the needs

of the bank. New application programs are added to the system as the need
arises. Thus, as time goes by, the system acquires more files and more
application programs.

Disadvantages of File System:

Keeping organizational information in a file-processing system has a
number of major disadvantages:

• Data redundancy:

Since different programmers create the files and application programs
over a long period, the various files are likely to have different formats and the
programs may be written in several programming languages. Moreover, the
same information may be duplicated in
several places (files). This redundancy leads to higher storage and access cost.
For example, the address and telephone number of a particular customer may
appear in a file that consists of savings-account records and in a file that
consists of checking-account records.

. Data inconsistency:

In addition, redundancy may lead to data inconsistency; that is, the
various copies of the same data may no longer agree for updating.
For example, a changed customer address may be reflected in savings-account
records but not elsewhere in the system.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 4

• Difficulty in accessing data:
Conventional file-processing environments do not allow needed data to

be retrieved in a convenient and efficient manner. Suppose that one of the bank
officers needs to find out the names of all customers who live within a particular
postal-code area. But there is only an application program to generate the list of
all customers. The bank officer has now two choices: either obtains the list of
all customers and extract the needed information manually or ask a system
programmer to write the necessary application program. Both alternatives are
obviously unsatisfactory.

• Data isolation:

Because data are scattered in various files, and files may be in different
formats, writing new application programs to retrieve the appropriate data is
difficult.

• Integrity problems:

The data values stored in the database must satisfy certain types of
consistency constraints. For example, the balance of a bank account may never
fall below a prescribed amount (say, $25). Developers enforce these constraints
in the system by adding appropriate code in the various application programs.
However, when new constraints are added, it is difficult to change the programs
to enforce them.

• Atomicity problems:

In many applications, it is crucial that, if a failure occurs, the data be
restored to the consistent state that existed prior to the failure. Consider a
program to transfer $50 from account A to account B. If a system failure occurs
during the execution of the program, it is possible that the $50 was removed
from account A but was not credited to account B, resulting in an inconsistent
database state.
That is, the funds transfer must be atomic.

• Concurrent-access anomalies:

Many systems allow multiple users to update the data simultaneously. In
such an environment, interaction of concurrent updates may result in
inconsistent data. Consider bank account A, containing $500. If two customers
withdraw funds (say $50 and $100 respectively) from
account A at about the same time, the result of the concurrent executions may
leave the account in an incorrect (or inconsistent) state. Depending on which
one writes the value last, the account may contain either $450 or $400, rather
than the correct value of $350.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 5

• Security problems:
Not every user of the database system should be able to access all the

data. For example, in a banking system, payroll personnel need to see only
information about the various bank employees but they can also access to
information about customer accounts.

These difficulties, among others, prompted the development of database
systems.

Characteristics of the Database Approach:
The main characteristics of the database approach versus the file-

processing approach are the following:
• Self-describing nature of a database system-

A fundamental characteristic of the database approach is that the database
system contains not only the database itself but also a complete definition or
description of the database structure and constraints. This definition is stored in
the DBMS catalog called meta-data. In traditional file processing, data
definition is typically part of the application programs themselves.

• Insulation between programs and data, and data abstraction-

In traditional file processing, the structure of data files is embedded in the
application programs, so any changes to the structure of a file may require
changing all programs that access this file. By contrast, DBMS access
programs do not require such changes in most cases. The structure of data files
is stored in the DBMS catalog separately from the access programs. We call this
Property program-data independence.

A DBMS provides users with a conceptual representation of data that
does not include many of the details of how the data is stored or how the
operations are implemented called data abstraction.

• Support of multiple views of the data-
A view may be a subset of the database or it may contain virtual data

that is derived from the database files but is not explicitly stored.

• Sharing of data and multiuser transaction processing-

A multiuser DBMS, as its name implies, must allow multiple users to
access the database at the same time. The DBMS must include concurrency
control software to ensure that several users trying to update the same data do so
in a controlled manner so that the result of the updates is correct. The atomicity
property ensures that either all the database operations in a transaction are
executed or none are.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 6

Actors on the Scene:
Many persons are involved in the design, use, and maintenance of a large

database with hundreds of users. The people whose jobs involve the day-to-day
use of a large database; we call them the "actors on the scene" and people who
may be called "workers behind the scene"-those who work to maintain the
database system environment but who are not actively interested in the database
itself.

1. Database Administrators
2. Database Designers
3. End Users
4. System Analysts and Application Programmers (Software Engineers)

Database Administrators:
In a database environment, the primary resource is the database itself, and

the secondary resource is the DBMS and related software. Administering these
resources is the responsibility of the database administrator (DBA). The DBA is
responsible for authorizing access to the database, for coordinating and
monitoring its use, and for acquiring software and hardware resources as
needed.

Database Designers:

Database designers are responsible for identifying the data to be stored in
the database and for choosing appropriate structures to represent and store this
data. These tasks are mostly undertaken before the database is actually
implemented and populated with data.

End Users:
End users are the people whose jobs require access to the database for

querying, updating, and generating reports; the database primarily exists for
their use. There are several categories of end users:
• Casual end users: Occasionally access the database, but they may need
different information each time. They use a sophisticated database query
language to specify their requests and are typically manager’s rank.
• Naive or parametric end users: Their main job function revolves around
constantly querying and updating the database, using standard types of queries
and updates. The tasks that such users perform are varied: Bank tellers check
account balances and post withdrawals and deposits.
• Sophisticated end users: Include engineers, scientists, business analysts, and
others who thoroughly familiarize themselves with the facilities of the DBMS
so as to implement their applications to meet their complex requirements.
• Stand-alone users: Maintain personal databases by using ready-made program
packages that provide easy-to-use menu-based or graphics-based interfaces.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 7

System Analysts and Application Programmers (Software Engineers):
System analysts determine the requirements of end users, especially naive

and parametric end users, and develop specifications for canned transactions
that meet these requirements.
Application programmers implement these specifications as programs; then they
test, debug, document, and maintain these canned transactions. Such analysts
and programmers- commonly referred to as software engineers.

WORKERS BEHIND THE SCENE:

Others are associated with the design, development, and operation of the
DBMS software and system environment but these persons are typically not
interested in the database itself. We call them the "workers behind the scene,"
and they include the following categories.
• DBMS system designers and implementers are persons who design and
implement the DBMS modules and interfaces as a software package like -
implementing the catalog, processing query language, processing the interface,
accessing and buffering data, controlling concurrency, and handling data
recovery and security.

• Tool developers include persons who design and implement tools-the software
packages that facilitate database system design and use and that help improve
performance.

 • Operators and maintenance personnel who are responsible for the actual
running and maintenance of the hardware and software environment for the
database system.

Although these categories of workers behind the scene are instrumental in
making the database system available to end users, they typically do not use the
database for their own purposes.

---X-----X---

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 8

PART-II

(Three Level Schema Architecture of Database)
Meaning of Schemas:

The description of a database is called the database schema, which is
specified during database design.
Features:

- A schema diagram displays only some aspects of a schema, such as the

names of record, types and data items, and some types of constraints.
- It is the logical structure of the database. Similar to types in programming

languages.
- It is not expected to change frequently.
- The schema is sometimes called the intension.
- The DBMS stores the descriptions of the schema constructs and

constraints-also called the meta-data.
Ex:

 CREATE TABLE stdinfo
 (id NUMBER(3) PRIMARY KEY,
 name VARCHAR(15) NOT NULL
);

Here stdinfo is called Schema.

Meaning of Instances:
The actual content of the database at a particular point in a time. Similar

to variables in programming languages.
 Ex: INSERT INTO stdinfo VALUES(101,’xyz’);
 It creates one instance wrt stdinfo schema.

Meaning of Database State:

The data in the database at a particular moment in time is called a
database state or snapshot. It is also called the current set of occurrences or

instances in the database.

Like SELECT * FROM stdinfo;

It create one snapshot or database state.
- Every time we insert or delete a record or change the value of a data item

in a record, we change one state of the database into another state.
- Database state also called an extension of the schema.
- When we define a new database, we specify its database schema only to

the DBMS. At this point, the corresponding database state is the empty

state with no data.

Author: Mr. Lokesh Rathore

WhatsApp&Call: 9425034034, website:

Three Level Schema Architecture:

- The goal of the three
applications and the physical database.

- A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the
is stored and maintained

Three level of Schema are:

- The internal/ Physical level

- Conceptual / Logical Level

- External / User View Level

Example of three level architecture of DBMS :

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Three Level Schema Architecture:

The goal of the three-schema architecture, is to separate the user
applications and the physical database.
A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the
is stored and maintained

The internal/ Physical level

Conceptual / Logical Level

External / User View Level

Example of three level architecture of DBMS :

schema architecture, is to separate the user

A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the data

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 10

The internal/ Physical level
- The internal level is closest to physical storage.
- It has an internal schema, which describes the physical storage

structure of the database. It means how data are actually stored on the

storage medium.
- The internal schema uses a physical data model and describes the

complete details of data storage and access paths for the database.
Like various types of stored record, specifies what indexes exists, how
files are represented, etc

Conceptual / Logical Level

- The conceptual level has a conceptual schema, which describes the
structure of the whole database for a community of users.

- The conceptual schema hides the details of physical storage structures
and concentrates on describing entities, data types, relationships, user
operations, and constraints.

- The users of this level are not concerned with how these logical data

structures will be implemented at the physical level, rather they just

are concerned about what information is to be kept in the database.
External / User View Level

- The external or view level includes a number of external schemas or
user views.

- Each external schema describes the part of the database that a
particular user group is interested in and hides the rest of the database
from that user group.

Data independence:
- Data independence means when we bring out changes in lower levels

then upper level does not feel any affect. i.e changing internal level does
not effect conceptual level.

- The three-schema architecture can make it easier to achieve true data
independence, both physical and logical.

It is of two types:-
1. Physical data independence
2. Logical data independence

Physical Data Independence:
- Physical data independence is the capacity to change the internal schema

without having to change the conceptual schema. Hence, the external
schemas need not be changed as well.

- Changes to the internal schema may be needed because some physical
files had to be reorganized.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 11

- for example: by creating additional access structures-to improve the
performance of retrieval or update. If the same data as before remains in
the database, we should not have to change the conceptual schema.

Logical data independence:
- Logical data independence is the capacity to change the conceptual

schema without having to change external schemas or application
programs.

- We may change the conceptual schema to expand the database (by adding
a record type or data item), to change constraints, or to reduce the
database (by removing a record type or data item).

- In the last case, external schemas that refer only to the remaining data
should not be affected.

- The logical data independence ensures that the application programs
remain the same.

Physical & Logical Data Independence:

It is more difficult to achieve logical data independence than the physical
data independence. The reason being that the application programs are heavily
dependent on the logical structure of the database.

Mappings:
- The process to convert a request and the result between view levels is

called mapping.
- The mapping defines the correspondence between three view levels.
- The mapping description is also stored in data dictionary.
- The DBMS is responsible for mapping between these three types of

schemas.
There are two types of mapping.
(i) External-Conceptual mapping
(ii) Conceptual-Internal mapping

External-Conceptual mapping :

- An external-conceptual mapping defines the correspondence between
a particular external view and the conceptual view.

- The external-conceptual mapping tells the DBMS which objects on
the conceptual level correspond to the objects requested on a particular
user's external view.

- If changes are made to either an external view or conceptual view,
then mapping must be changed accordingly.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 12

Conceptual-Internal mapping:
- The conceptual-internal mapping defines the correspondence between

the conceptual view and the internal view, i.e. database stored on the
physical storage device.

- It describes how conceptual records are stored and retrieved to and
from the storage device.

- This means that conceptual-internal mapping tells the DBMS that how
the conceptual! records are physically represented.

- If the structure of the stored database is changed, then the mapping
must be changed accordingly. It is the responsibility of DBA to
manage such changes.

Data Dictionary:
It contains information about the structures in the database. For Example,

Each “object” in the database Tables, Views, Types, Procedures, Functions,
Columns …, Who created it, Its Definition, What it uses etc.

- Data dictionary also called- System Catalog, Meta Data, Data
Repository.

- DBMS Use a Data Dictionary for-Security, Integrity, View Definition,
Parsing SQL, Optimizing SQL.

- Data Dictionary used by DBA, Programmer.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Data Models

A data model is a collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints.

Database models may be grouped into two categories:

1) Conceptual model focuses on the logical nature of the data representation

and is concerned with what is represented in the database. Conceptual models

include:

 - Entity Relationship (E-R) model

 - Object-Oriented model.

2) Implementation model emphases on how information is represented in

the database or on how the data structures are implemented to represent what is

modeled. Implementation models include:

 - Hierarchical database model

 - Network database model

 - Relational database model.

 Within DBMS technology, as the hierarchical is the oldest DBMS data

model, and the object-oriented being the newest DBMS data model.

Hierarchical database model:

In the hierarchical model, data is organized as an inverted tree. Each

entity has only one parent but can have several children. At the top of the

hierarchy, there is one entity, which is called the root.

Ex: Hierarchical Model

Author: Mr. Lokesh Rathore

WhatsApp&Call: 9425034034, website:

Network database model:

In the network model, the entities are organized in a graph, in which some

entities can be accessed through several paths

Ex: Network Model

Relational database model:

In the relational model, data is organized in two

relations. The tables or relations are, however, related to each other, as we will

see shortly.

Ex: Relational Model

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

database model:

In the network model, the entities are organized in a graph, in which some

entities can be accessed through several paths

Relational database model:

In the relational model, data is organized in two-dimensional tables

relations. The tables or relations are, however, related to each other, as we will

In the network model, the entities are organized in a graph, in which some

dimensional tables called

relations. The tables or relations are, however, related to each other, as we will

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Comparisons of these three model:

Author: Mr. Lokesh Rathore

WhatsApp&Call: 9425034034, website:

Entity-Relationship Model:

It is a data model in which information are stored in the database is viewed as
Entity Set and Relationship Set among entity.
Ex:

� Rectangles represent entity sets.
� Diamonds represent relationship sets.
� Lines link attributes to entity sets and entity
� Ellipses represent attributes
� Underline indicates primary k

Entity Sets:
An entity is an object that exists and is distinguishable from other objects.

Like- specific person, company, event, plant

An entity set is a set of entities of the same type that share the same

properties. Like- set of all persons, companies, trees, holidays.

Ex: Entity Sets for customer

Attributes:

An entity is represented by a set of attributes that is

possessed by all members of an entity set.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Relationship Model:

It is a data model in which information are stored in the database is viewed as
Entity Set and Relationship Set among entity.

Rectangles represent entity sets.
Diamonds represent relationship sets.
Lines link attributes to entity sets and entity sets to relationship sets.
Ellipses represent attributes
Underline indicates primary key attributes.

is an object that exists and is distinguishable from other objects.

specific person, company, event, plant.

is a set of entities of the same type that share the same

set of all persons, companies, trees, holidays.

customer and loan

An entity is represented by a set of attributes that is descriptive properties

possessed by all members of an entity set.

It is a data model in which information are stored in the database is viewed as

sets to relationship sets.

is an object that exists and is distinguishable from other objects.

is a set of entities of the same type that share the same

descriptive properties

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Ex: customer = (customer-id, customer-name, customer-street, customer-city)

loan = (loan-number, amount)

Domain – the set of permitted values for each attribute. For Example- List of

customer-name only.

Types of Attribute:

○ Simple and composite attributes. Ex: name, address are composite type.

○ Single-valued and multi-valued attributes. Ex: Phone number is multi
valued.

○ Derived attributes: Can be computed from other attributes. Ex. age, given
date of birth

E-R Diagram With Composite, Multivalued, and Derived Attributes

Ellipses represent attributes
o Double ellipses represent multi valued attributes.
o Dashed ellipses denote derived attributes.

Strong Entity v/s Weak Entity Set:

- An entity set which have a primary key is termed as a strong entity set;
where as an entity set does not have sufficient attributes to form a
primary key called weak entity.

- The primary key of a weak entity set is formed by the primary key of
the strong entity set on which the weak entity set is existence
dependent.

Example:

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Here-

- Identifying relationship depicted using a double diamond.
- We depict a weak entity set by double rectangles.
- Underline the discriminator of a weak entity set with a dashed line.

- payment-number – discriminator of the payment entity set.

Primary key for payment – (loan-number, payment-number)

Relationship Sets:

A relationship is an association among several entities. For example, we
can define a relationship that associates customer Hayes with loan L-15. This
relationship specifies that Hayes is a customer with loan number L-15.

A relationship set is a set of relationships of the same type. Consider the
two entity sets customer and loan . We define the relationship set borrower to

denote the association between customers and the bank loans that the customers
have.

Relationship Set borrower

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

An attribute can also be property of a relationship set. For instance, the

depositor relationship set between entity sets customer and account may have

the attribute access-date.

Relationship Sets with Attributes

Cardinality Constraints

(Types of Relationship)

We express cardinality constraints by drawing either a directed line (→),
signifying “one,” or an undirected line (—), signifying “many,” between the
relationship set and the entity set.
It can be classified into 3 categories.

1. One to one

2. One to many

3. Many to many

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

1. One-to-one relationship: A customer is associated with at most one loan via
the relationship borrower. A loan is associated with at most one customer
via borrower

2. Many-To-One Relationships: A loan is associated with several customers

via borrower; a customer is associated with at most one loan via borrower.

3. Many-To-Many Relationship: A customer is associated with several

(possibly 0) loans via borrower. A loan is associated with several (possibly

0) customers via borrower.

Mapping Cardinalities:

Express the number of entities to which another entity can be associated via a

relationship set. Most useful in describing binary relationship sets.

Mapping cardinality between One to One and One to Many relationship set can

be expressed as -

Author: Mr. Lokesh Rathore

WhatsApp&Call: 9425034034, website:

Mapping cardinality between Many to One and Many to Many relationship set

can be expressed as-

Participation of an Entity Set in a Relationship Set

1. Total participation (indicated by double line)

2. Partial participation

Total participation: When e

one relationship in the relationship set

total. Here every loan must have a customer associated to it via borrower

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Mapping cardinality between Many to One and Many to Many relationship set

f an Entity Set in a Relationship Set:

(indicated by double line)

When every entity in the entity set participates in at least

one relationship in the relationship set. E.g. participation of loan in borrower

every loan must have a customer associated to it via borrower

Mapping cardinality between Many to One and Many to Many relationship set

very entity in the entity set participates in at least

borrower is

every loan must have a customer associated to it via borrower.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Partial participation: When some entities may not participate in any

relationship in the relationship set. E.g. participation of customer in borrower is

partial

Alternative Notation for Cardinality Limits

Cardinality limits can also express participation constraints

The edge between loan and borrower has a cardinality constraint of 1..1,

meaning the minimum and the maximum cardinality are both 1. i.e. each loan

must have exactly one associated customer.

The limit 0..∗ on the edge from customer to borrower indicates that a customer

can have zero or more loans.

Degree of a Relationship Set: Refers to number of entity sets that

participate in a relationship set.

- Relationship sets that involve two entity sets are binary (or degree

two).

- Relationship sets may involve more than two entity sets like ternary.

- E.g.

Here, suppose employees of a bank may have jobs (responsibilities) at multiple

branches, with different jobs at different branches. Then there is a ternary

relationship set between entity sets employee, job and branch.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 23

Relationships between more than two entity sets are rare. Most

relationships are binary.

Meaning and Type of Key attributes

No two entities in an entity set are allowed to have exactly the same value for

all attributes. A key allows us to identify a set of attributes that is enough to

differentiate entities from each other.

 super key: is a set of one or more attributes that, taken collectively, allow us to

identify uniquely an entity in the entity set.

For example, the customer-id attribute is sufficient to differ one customer entity

from another. Thus, customer-id is a superkey. Similarly, the combination of

customer-name and customer-id is a superkey for the entity set customer.

The customer-name attribute of customer is not a superkey, because several

people might have the same name.

Candidate keys: Every attribute or combination of attributes that uniquely

identifies an entity in entity set.

If K is a superkey, then superset of such K contain one or more super keys.

Then we say each keys are candidate key. We are often interested in superkeys

for which no proper subset is a superkey. Such minimal superkeys are called

candidate keys.

Suppose that a combination of customer-name and customer-street is sufficient

Then, both {customer-id} and {customer-name, customer-street} are candidate

keys.

Although the attributes customerid and customer-name together does not form a

candidate key, since the attribute customer-id alone is a candidate key.

primary key: a candidate key that is chosen for identifying entities within an

entity set.

Composite key: A primary key that consist of more then one attributes.

Foreign key:An attributes in one entity set that serve as the primary key of

another entity set. It is also called reference key.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 24

DBMS Languages

Once the design of a database is completed and a DBMS is chosen to implement

the database, then a set of instructions are required to specify various schemas

for database, mappings between them, accessing and removing records etc.

Thus format of such instructions called DBMS language.

DBMS language classified in two categories:

1) DDL – Data Definition Language

2) DML – Data Manipulation Language

DDL – (Data Definition Language): In DBMSs, a clear separation is

maintained between the conceptual and internal levels, the DDL is used to

specify the conceptual schema only where as Storage Definition Language

(SDL), is used to specify the internal schema.

� The mappings between the two schemas may be specified in either one of
these languages – DDL or SDL.

� We would need a third language, called View Definition Language
(VDL), to specify user views and their mappings to the conceptual
schema.

� In most DBMSs the DDL is used to define both conceptual and external
schemas because there is no strict separation of levels are maintained.

� The DBMS will have a DDL compiler whose function is to process DDL
statements in order to identify descriptions of the schema constructs and
to store the schema description in the DBMS catalog.

� DDL used by DBA and by database designers to define both schemas as
conceptual and internal.

Example of DDL

How to create schema?

CREATE TABLE book_info
(
 bookid NUMBER(4),
 bookname VARCHAR2(15),
 author VARCHAR2(20),
 publisher VARCHAR2(15),
 price NUMBER(6,2),
);

Author: Mr. Lokesh Rathore

WhatsApp&Call: 9425034034, website:

DML – Data Manipulation Language

� Once the database schemas are compiled then operation on compiled

database called manipulation.

� Manipulations include retrieval, insertion, deletion, and modification of

the data.

� The DBMS provides a language to perform above op

Data Manipulation Language (DML) for these purposes.

Example of DML

� Insert new record-

INSERT INTO book_info VALUES(1001,'DBMS','KORTH','MC GRUE

HILL',550.5);

It create only one instance of book_info schema.

Retrieval of data from database

SELECT * FROM book_info.

Database Technology Trends

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Data Manipulation Language

Once the database schemas are compiled then operation on compiled

database called manipulation.

Manipulations include retrieval, insertion, deletion, and modification of

The DBMS provides a language to perform above operations called the

Data Manipulation Language (DML) for these purposes.

INSERT INTO book_info VALUES(1001,'DBMS','KORTH','MC GRUE

It create only one instance of book_info schema.

database-

SELECT * FROM book_info.

Database Technology Trends

Once the database schemas are compiled then operation on compiled

Manipulations include retrieval, insertion, deletion, and modification of

erations called the

INSERT INTO book_info VALUES(1001,'DBMS','KORTH','MC GRUE

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 26

Relational Algebra

The basic set of operations for the relational model is known as the relational
algebra. These operations enable a user to specify basic retrieval requests.

The result of a retrieval is a new relation, which may have been formed from
one or more relations. The algebra operations thus produce new relations,
which can be further manipulated using operations of the same algebra.

A sequence of relational algebra operations forms a relational algebra

expression, whose result will also be a relation that represents the result of a
database query (or retrieval request)

1) Unary Relational Operations: Needs only one relation.
 Types: SELECT, PROJECT, RENAME

2) Relational Algebra Operations From Set Theory: Needs two relations.
Types: UNION, INTERSECTION, DIFFRENCE,

CARTICIAN PRODUCT, JOIN

1) SELECT Operation Properties (σ)

Selection(σ) in relational algebra returns those tuples in a relation(R) that fulfil

a condition.

Syntax:

σ<selection condition>(R)

Condition can be created using column, values and operators.

In general, we allow comparisons using =, ≠, <, ≤, >, ≥ in the selection

predicate.

Furthermore, we can combine several predicates into a larger predicate by using

the connectives and (∧), or (∨), and not (￢).

Example: σ(rollno=101)(student_tbl)

We can give more then one condition

 σ(rollno=101 V percent>80)(student_tbl)

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 27

SQL representation: > SELECT * FROM student_tbl WHERE rollno=101

Output:

Rollno name stream branch Percent

101 abc MSc CS 80

2) PROJECT Operation Properties (∏)

The PROJECT(∏) operation is used to select a subset of the attributes of a

relation(R) by specifying the names of the required attributes.

Syntax:

∏<subset of attributes>(R)

Example:

∏ (rollno, name,percentage)(student_tbl)

SQL representation:> SELECT rollno, name,percentage FROM student_tbl

Output:

Rollno name Percent

101 abc 80

102 xyz 70

103 pqw 90

104 rmn 60

We can also specified attributes with condition:

∏ (rollno, name,percentage)(σ(rollno=101 OR percent>80)(student_tbl))

Sql> SELECT rollno, name,percentage FROM student_tbl WHERE rollno=101

OR percent>80

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 28

Rename:(ρ)

The results of relational-algebra expressions do not have a name that we can use

to refer to them. It is useful to be able to give them names;

Syntax1: ρS (B1, B2, …, Bn) (R)

is a renamed relation S based on R with column names B1, B2, …..Bn.

Ex:ρstudent_contact(rollno,name,address,mobile)

(П(rollno,name,address,mobile)(student_tbl))

Sql> CREATE TABLE student_contact(rollno,name,address,mobile)

 AS SELECT rollno,name,address,mobile FROM student_tbl;

Syntax 2: ρS (R)

is a renamed relation S based on R (which does not specify column names).

Ex: RENAME student_tbl TO student_master;

ρstudent_master(student_tbl)

UNION Operation(∪∪∪∪)

The result of this operation, denoted by R ∪ S, is a relation that includes all

tuples that are either in R or in S or in both R and S. Duplicate tuples are

eliminated.

Example: Πcustomer-name (borrower) ∪ Πcustomer-name (depositor)

find the names of all bank customers who have either an account or a loan or

both

Type Compatibility

–The operand relations R1(A1, A2, ..., An) and R2(B1, B2, ...,Bn) must have

the same number of attributes.

- the domains of corresponding attributes must be compatible; that is,

dom(Ai)=dom(Bi) for i=1, 2, ..., n.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 29

–The resulting relation for R1∪R2,R1∩R2, or R1-R2has the same attribute

names as the first operand relation R1 (by convention).

R S

A B A B

a1 b1 a1 b1

a2 b2 a2 b2

a3 b3 a4 b4

R U S

A B

a1 b1

a2 b2

a3 b3

a4 b4

INTERSECTION OPERATION(∩)

The result of this operation, denoted by R ∩S, is a relation that includes

all tuples that are in both R and S. The two operands must be "type

compatible"

Example: Πcustomer-name (borrower) ∩ Πcustomer-name (depositor)

find all customers who have both a loan and an account

R S

A B A B

a1 b1 a1 b1

a2 b2 a2 b2

a3 b3 a4 b4

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 30

R ∩ S

A B

a1 b1

a2 b2

Set Difference (or MINUS) Operation(-)

The result of this operation, denoted by R - S, is a relation that includes all

tuples that are in R but not in S. The two operands must be "type compatible”.

Example: Πcustomer-name (borrower) - Πcustomer-name (depositor)

find all customers who have a loan but not an account

R S

A B A B

a1 b1 a1 b1

a2 b2 a2 b2

a3 b3 a4 b4

R - S S - R

A B A B

a3 b3 a4 b4

Notice that both union and intersection are commutative operations;that is

R ∪S = S ∪R, and R ∩S = S ∩R

Both union and intersection are associative operations; that is

R ∪(S ∪T) = (R ∪S) ∪T, and (R ∩S) ∩T = R ∩(S ∩T)

The minus operation is not commutative; that is, in general

R -S ≠S –R

The Cartesian-product operation(X)

This operation is used to combine tuples from two relations

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 31

In general, the result of R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm) is a relation Q

with degree n + m attributes Q(A1, A2, . . ., An,B1, B2, . . ., Bm).

The resulting relation Q has one tuple for each combination of tuples—one from

R and one from S.

The two operands do NOT have to be "type compatible”

R S

A B A B

a1 b1 a1 b1

a2 b2 a2 b2

a3 b3 a4 b4

R x S

A B A B

a1 b1 a1 b1

a1 b1 a2 b2

a1 b1 a4 b4

a2 b2 a1 b1

a2 b2 a2 b2

a2 b2 a4 b4

a3 b3 a1 b1

a3 b3 a2 b2

a3 b3 a4 b4

JOIN Operation–

The sequence of Cartesian product followed by select called JOIN.

It is used to identify and select related tuples from two relations.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 32

The general form of a join operation on two relations R(A1, A2, . . ., An) and

S(B1, B2, . . ., Bm) is:

R JOIN<join condition>S

where R and S can be any relations that result from general relational algebra

expressions.

R S

A B B C

a1 b1 b1 c1

a2 b2 b2 c2

a3 b3 b4 c4

a4 b4 b1 c2

R JOIN(R.B=S.B) S

A R.B S.B C

a1 b1 b1 c1

a1 b1 b1 c2

a2 b2 b2 c2

a4 b4 b4 c4

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 33

Functional Dependency

Before defining functional dependency it is clear that- each tuple in a relation

should represent one entity or relationship instance.

- Attributes of different entities should not be mixed in the same relation Only

foreign keys should be used to refer to other entities

About FD

Functional dependencies (FDs) are used to specify formal measures of the

"goodness" of relational designs. FDs and keys are used to define normal

forms for relations. FDs are constraints that are derived from the meaning and

interrelationships of the data attributes

A set of attributes X functionally determines a set of attributes Y if the value of

X determines a unique value for Y

X �Y holds if whenever two tuples have the same value for X, they must have

the same value for Y.

For any two tuples t1 and t2 in any relation instance r(R):

If t1[X]=t2[X], then t1[Y]=t2[Y]

X � Y in R specifies a constraint on all relation instances r(R)

Example: Suppose a company has a number of projects and they are handled by

employees of different department and relations are define like this.

Employee�Ename, SSN(PK), Bdate, address, Dnumber(FK)

Department�Dname, Dnumber(PK), DmgrSSN(FK)

Dept_location� Dnumber(FK), Dlocation(PK)

Project� Pname, Pnumber(PK), Plocation, Dnumber(FK)

Works_On�Pnumber(FK), SSN(FK) (PK), hours.

In above relations-

social security number determines employee name

SSN -> ENAME

project number determines project name and location

PNUMBER -> {PNAME, PLOCATION}

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 34

employee ssn and project number determines the hours per week that the

employee works on the project

{SSN, PNUMBER} -> HOURS

It is clear that If K is a key of R, then K functionally determines all attributes in

R.

What is Normalization?

� Normalization is a process of converting a relation into a standard form.

� The possible approach is to design schemas that are in normal form.

� The normalization process is built around the concept of Normal form.

� It is the process of minimizing redundancy form the relation.

Why we need Normalization?

� The goal of RDBMS is to generate a set of relation schemas.

� To reduce unnecessary redundancy in stored information.

� The process of analyzing the given schemas based on their FDs and

Primary keys to achieve desirable properties of

a. Minimizing redundancy

b. Minimizing Insertion, deletion and update anomalies

Normal Forms:

The 1st three NF were defined by Codd.

� 1NF

� 2NF

� 3NF

Later form proposed by Boyce and Codd

� BCNF

� 4NF

� 5NF

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Unnormalized Relations:

• First step in normalization is to convert the data into a two-dimensional
table. In unnormalized relations data can repeat within a column.

First Normal Form:

To move to First Normal Form a relation must contain only atomic values at
each row and column.

– No repeating groups
– A column or set of columns is called a Candidate Key when its

values can uniquely identify the row in the relation.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

1NF Storage Anomalies:

• Insertion: A new patient has not yet undergone surgery -- hence no

surgeon # -- Since surgeon # is part of the key we can’t insert.

• Insertion: If a surgeon is newly hired and hasn’t operated yet -- there will

be no way to include that person in the database.

• Update: If a patient comes in for a new procedure, and has moved, we

need to change multiple address entries.

• Deletion (type 1): Deleting a patient record may also delete all info about

a surgeon.

• Deletion (type 2): When there are functional dependencies (like side

effects and drug) changing one item eliminates other information.

Second Normal Form:

A relation is said to be in Second Normal Form when every nonkey attribute is

fully functionally dependent on the primary key.

– That is, every non key attribute needs the full primary key for unique

identification.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

1NF Storage Anomalies Removed in 2NF:

• Insertion: Can now enter new patients without surgery.

• Insertion: Can now enter Surgeons who haven’t operated.

• Deletion (type 1): If Charles Brown dies the corresponding tuples from

Patient and Surgery tables can be deleted without losing information on

David Rosen.

• Update: If John White comes in for third time, and has moved, we only

need to change the Patient table

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

2NF Storage Anomalies:

• Insertion: Cannot enter the fact that a particular drug has a particular side

effect unless it is given to a patient.

• Deletion: If John White receives some other drug because of the

penicillin rash, and a new drug and side effect are entered, we lose the

information that penicillin can cause a rash

Update: If drug side effects change (a new formula) we have to update multiple

occurrences of side effects.

Third Normal Form:

• A relation is said to be in Third Normal Form if there is no transitive

functional dependency between nonkey attributes

– When one nonkey attribute can be determined with one or more

nonkey attributes there is said to be a transitive functional

dependency.

• The side effect column in the Surgery table is determined by the drug

administered

– Side effect is transitively functionally dependent on drug so

Surgery is not 3NF.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

2NF Storage Anomalies Removed in 3NF:

• Insertion: We can now enter the fact that a particular drug has a particular

side effect in the Drug relation.

• Deletion: If John White receives some other drug as a result of the rash

from penicillin, but the information on penicillin and rash is maintained.

• Update: The side effects for each drug appear only once.

Boyce-Codd Normal Form:

• Most 3NF relations are also BCNF relations.

• A 3NF relation is NOT in BCNF if:

– Candidate keys in the relation are composite keys (they are not
single attributes)

– There is more than one candidate key in the relation, and

– The keys are not disjoint, that is, some attributes in the keys are
common

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Fourth Normal Form:

• A relation is in 4 NF iff, it does not exists an multi-valued dependency

(MVD) in the relation.

• MVD exists only if the relation R has at least 3 attributes.

• R(A,B,C) then MVD between (R.A→→R.B) holds iff the MVD between

(R.A→→R.C) holds and (R.B, R.C) are independent to each other.

• Common notation (R.A→→R.B|R.C)

It is unnormalized relation indicate course can be taught by any of the indicated

teachers and uses all the indicated texts.

Convert equivalent normalized form

Here teacher and text are independent of each other. Decompose it.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Fifth Normal Form:

• A relation R is in 5 NF also called Projection-Join (PJNF), iff every join
dependency in relation R is implied by candidate keys of R.

• Ex: following relation SPJ is in upto 4NF.

• It has three projection SP, PJ and JS.

• Effect of joining SP and PJ over P#.

• joining result and JS over (J#, S#) must produce original copy of SPJ.

• Relation SPJ is not 5NF; Its single candidate key(combination of

S#,P#,J#) does not imply that relation can be nonloss-decomposed into

it’s projections SP,PJ and JS.

• The projection SP, PJ and JS are in 5 NF because they do not involve in

any join dependency.

--

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 42

TRANSACTION, CONCURRENCY & RECOVERY

The concept of transaction:

Collections of operations that form a single logical unit of work are called

transactions.

Transaction processing systems: Systems with large databases and hundreds

of concurrent users that are executing database transactions.

What is a Transaction ?

• A logical unit of work on a database

– An entire program

– A single command

• The entire series of steps necessary to accomplish a logical unit of work

• Successful transactions change the database from one CONSISTENT

STATE to another

 (One where all data integrity constraints are satisfied)

Example of a Transaction

For example, transfer of funds from a checking account to a saving account is a

single operation from the customer’s standpoint; within the database system,

however, it consists of several operations. Like when we want to update a

record-

– Locate the Record on Disk

– Bring record into Buffer

– Update Data in the Buffer

– Writing Data Back to Disk

“Single user Versus Multiuser Systems”

• Single-User : at most one user at a time can use the system

• Multiuser : many users can use the system concurrently.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 43

• Multiprogramming : allows the computer to execute multiple programs

at the same time.

• Interleaving : keeps the CPU busy when a process requires an input or

output operation, the CPU switched to execute another process rather

than remaining idle during I/O time .

• Most of the theory concerning concurrency control in databases is

developed in terms of interleaved concurrency.

“Transactions, Read and Write Operations and DBMS Buffers ”

• A Transaction : is a logical unit of database processing that includes one

or more database access operation.

• All database access operations between Begin Transaction and End

Transaction statements are considered one logical transaction.

• If the database operations in a transaction do not update the database but

only retrieve data , the transaction is called a read-only transaction.

• Basic database access operations :

– read_item(X) : reads a database item X into program variable.

– Write_item(X) : Writes the value of program variable X into the

database item X.

“Transaction states and additional operations

• A transaction is an atomic unit of work that is either completed in its

entirety or not done at all.

• For recovery purposes the system needs to keep track of when the

transaction starts, terminates, and commits or aborts.

• The recovery manager keeps track of the following operations :

– BEGIN_TRANSACTION
– READ OR WRITE
– END_TRANSACTION
– COMMIT_TRANSACTION
– ROLLBACK

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

TRANSACTION STATES

• Active - The initial state; the transaction stays in this state until while it is

still executing.

• Partially committed - After the final statement has been executed. At

this point failure is still possible since changes may have been only done

in main memory, a hardware failure could still occur.

• Committed- After successful completion. Once committed, the

transaction can no longer be undone by aborting it.

• Failed - After the discovery that normal execution can no longer proceed.

• Aborted - After the transaction has been rolled back, the database has

been restored to its state prior to the start of the transaction.

The ACID Properties

• Atomicity : All actions in the exact happen, or none happen.

• Consistency : If each exact is consistent, and the DB starts consistent, it

ends up consistent.

• Isolation : Execution of one exact is isolated from that of other exacts.

• Durability : After a transaction completes successfully, the changes it

has made to the database persist, even if there are system failures.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Concurrency Control Mechanisms

What is Concurrency?

The term concurrency refers to the fact that DBMSs typically allow many

transactions to access the same database at the same time.

• Coordination of simultaneous transaction execution in a multiprocessing

database system.

• Ensure transaction serializability in a multi-user database.

• Lack of Concurrency Control can create data integrity and consistency

problems:

– Lost Updates

– Temporary Update (Dirty Read)

– Incorrect Summary

– Unrepeatable Read

Why Concurrency Control is needed ?

Several problems can occur when concurrent transactions execute in an

uncontrolled manner.

1. The Lost Update Problem : A second transaction writes a second value of

a data-item (datum) on top of a first value written by a first concurrent

transaction, and the first value is lost to other transactions running

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 46

concurrently which need, by their precedence, to read the first value. The

transactions that have read the wrong value end with incorrect results.

2. The temporary Update (or Dirty read) problem: Transactions read a

value written by a transaction that has been later aborted. This value

disappears from the database upon abort, and should not have been read by

any transaction ("dirty read"). The reading transactions end with incorrect

results.

3. The Incorrect Summary Problem : While one transaction takes a

summary over the values of all the instances of a repeated data-item, a

second transaction updates some instances of that data-item. The resulting

summary does not reflect a correct result for any (usually needed for

correctness) precedence order between the two transactions (if one is

executed before the other), but rather some random result, depending on the

timing of the updates, and whether certain update results have been included

in the summary or not.

4. Unrepeatable Read problem : A transaction reads items twice with two

different values because it was changed by another transaction between the

two reads.

Transaction Recovery

• Restore a database from a given state to a previous consistent state.

• Atomic Transaction Property (All or None)

• Backup Levels:

– Full Backup

– Differential Backup

– Transaction Log Backup

• Database / System Failures:

– Software (O.S., DBMS, Application Programs, Viruses)

– Hardware (Memory Chips, Disk Crashes, Bad Sectors)

– Programming Exemption (Application Program rollbacks)

– Transaction (Aborting transactions due to deadlock detection)

– External (Fire, Flood, etc)

• Recover Database by using data in the Transaction Log

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

• Write-Ahead-Log – Transaction logs need to be written before any

database data is updated

• Redundant Transaction Logs – Several copies of log on different devices

• Database Buffers – Buffers are used to increase processing time on

updates instead of accessing data on disk

• Database Checkpoints – Process of writing all updated buffers to disk �

While this is taking place, all other requests are not executes

– Scheduled several times per hour

– Checkpoints are registered in the transaction log

Locking: (technique for Concurrency Control)

– Some of the main techniques used to control concurrent execution of

transactions are based on the concept of locking data items.

– “The concept of locking data items is one of the main techniques used for

controlling the concurrent execution of transactions.”

– Locking is a mechanism used to ensure data integrity while providing

concurrent access to data.

• Shared/Exclusive or Read/Write or S/X locking is a multiple-mode lock.

• The lock has three values:

o read_locked (shared lock): The item is locked for read purpose and

can be shared for reading by another transaction.

o write_locked (exclusive lock): The item is locked for write purpose

and cannot be accessed by another transaction.

o unlocked: The item is unlocked and can be accessed by any

transaction.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Locking Protocols

Consider some tuple t; suppose transaction A holds lock on t and some distinct

transaction B issues a request for a lock on t, then-

1. A transaction that wishes to retrieve a tuple must first acquire an S lock

on that tuple.

2. A transaction that wishes to update a tuple must first acquire an X lock

on that tuple.

3. If transaction A holds an exclusive (X) lock on tuple t, then a request

from some distinct transaction B for a lock of either type on t cannot be

immediately granted because it conflict with a lock already held by

transaction A, B goes into a wait state. B will wait until the A’s lock is

released.

4. X locks are released at the end of transaction (COMMIT or

ROLLBACK). S locks are normally released at that time also.

5. If transaction A holds a Shared (S) lock on tuple t, then:

� A request from some distinct transaction B for an X lock on t cannot

be immediately granted.

� A request from some distinct transaction B for an S lock on t can and

will be immediately granted (i.e., B will now also hold an S lock t).

Above rules can be summarized by means of a lock type compatibility matrix

as follows:

Granting a Lock

� The Concurrency Control Manager is responsible for granting a lock.

� When a transaction Ti request a lock on a data item Q in a particular

mode M, the concurrency control manager grants the lock provided that:

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

 1. There is no other transaction holding a lock on Q in a mode that

conflicts M.

2. There is no other transaction that is waiting for a lock on Q and that

made a lock request before Ti.

Implementation of Locking

► The Lock Manager implements a process that receives message from

transactions and send message in reply.

► The Lock Manager uses a linked list data structure of records, one for

each request, in the order in which the requests arrived. It uses Lock table

for this purpose.

► The Lock Manager processes requests in following way:

� When a lock request message arrives, it adds a record to the end of

linked list for the data item. It always grants a lock request on a data

item that is not currently locked.

� When the lock manager receives an unlock message from a

transaction, it deletes the records for that data item in the linked list

corresponding to that transaction.

� If a transaction aborts, the lock manager deletes any waiting request

made by the transaction.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Releasing a Lock:

A lock can be released using one of the following statements:

1. ROLLBACK statement

2. ROLLBACK to COMMIT statement

3. COMMIT statement

Removing three Concurrency Problems through Locking:

1. The Lost Update Problem

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

2. The Uncommitted Dependency Problem:

The problem arises if one transaction is allowed to retrieve or update a tuple that

has been updated by another transaction but not yet committed by that other

transaction.

Problem1-

Problem2-

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

3: The Inconsistent Analysis Problem:

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Intent Locking:

► According to intent locking protocol no transaction is allowed to acquire a

lock on a tuple before first acquiring a lock – probably intent lock on the

relation that contains it.

► We introduce three additional kinds of locks, called intent locks.

� Intent shared (IS) : T intends to set S locks on individual tuples in R.

� Intent Exclusive (IX) : T might update individual tuples in R and set X lock

on those tuples.

� Shared (S) : T can tolerate concurrent readers but not updates, in R.

� Shared Intent Exclusive (SIX) : Combine S and IX i.e., T can tolerate

concurrent readers but not updates in R & T might updates individual tuples

in R and will therefore set X locks on those tuples.

� Exclusive (X) : T cannot tolerate any concurrent access to R at all.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Intent Locking protocols:

There are two intent locking protocols:

1. Before a given transaction can acquire a S lock on a given tuple, it must first

acquire an IS on the relation containing that tuple.

2. Before a given transaction can acquire a X lock on a given tuple, it must first

acquire an IX on the relation containing that tuple.

Deadlock: (technique for concurrency control)

Deadlock occurs when each transaction T in a set of two or more transactions is

waiting for some item that is locked by some other transaction T’ in the set.

Definition:

“ Deadlock is a situation in which two or more transactions are in a

simultaneous wait state, each of them waiting for one of the others to release a

lock before it can proceed. ”

Example of Deadlock:

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

In figure, r1 and r2 are intended to represent any lockable resources & the

“LOCK…EXCLUSIVE” statement are intended to represent any operations that

request X locks.

Deadlock detection: Wait-For Graph

► If a Deadlock occurs, it is desirable that the system detect it and break it.

► Detecting a deadlock involves detecting a cycle in the Wait-For Graph.

► Wait-For Graph is a graph of “who is waiting for whom”.

► Breaking a deadlock involves choosing one of the deadlocked transactions

(i.e., one of the transaction in the cycle in the graph) as the victim and

rolling it back, there by releasing a lock and so allowing some other

transaction to proceed.

Deadlock prevention:

► Instead of allowing Deadlocks to occur & dealing with them when they

do, it would be possible to avoid them entirely by modifying the locking

protocol in various ways.

► Approach of Deadlock Prevention:

 ���� Wait-Die

 ���� Wound-Wait

The approach works as follows:

► Every transaction is timestamped with its start time (which must be

unique).

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 56

► when transaction A requests a lock on a tuple that is already locked by

transaction B, then;

� Wait-Die: Transaction A waits if it is older than B; otherwise, it “dies” –

that is, A is rolled back and restarted.

� Wound-Wait: Transaction A waits if it is younger than B; otherwise, it

“wounds” B – that is, B is rolled back and restarted.

► If a transaction has to be restarted, it retain its original timestamp.

► The main disadvantage of this approach is that it does too many

rollbacks.

Recovery from Deadlock:

To recover a deadlock three steps need to be taken:

1. Selection of a victim

2. Rollback

3. Starvation

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 57

SQL- Structure Query Language

� In current DBMSs, DDL, VDL, DML are considered a comprehensive

integrated languages.

� SQL is typical example of a comprehensive database language.

� SQL is the relational database language which represents a combination

of DDL, VDL, and DML, as well as statements for constraint

specification, schema evolution, and other features.

� The SDL was a component in early versions of SQL but has been

removed from the language to keep it at the conceptual and external

levels only.

Feature of SQL

� It is a non procedural language.

� It is a 4GL programming language.

� focus only What to do? not How to do?

� It is a case insensitive language.

Classification of SQL Commands

� DDL Commands

� DML Commands

� DCL Commands

� TCL Commands

� Query Language

Creating Table Space

• Used to create a file contain data dictionary of our complete data base.

• Step1:> Connect System/Manager;

• Step2: >CREATE TABLESPACE dept_space DATAFILE ‘dept_space.dat'

SIZE 5M;

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 58

Create New user

Step1:> Connect system/manager; (if not connected)

Step2:> CREATE USER user_lokesh IDENTIFIED BY password DEFAULT

TABLESPACE dept_space;

Step3:> GRANT CONNECT,RESOURCE TO user_lokesh ;

Step4:> Connect user_lokesh/password;

Remove Users

Step1: Connect system/manager;

Step2: DROP USER user_lokesh CASCADE;

Create Table:

CREATE TABLE table_name

(

 attr_name1 DataType,

 attr_name2 DataType,

 ………..

 attr_namen DataType

);

Modify Table Attributes

 Add column-

 ALTER TABLE table_name ADD (new_attr DataType);

 Resize/Change DataType-

 ALTER TABLE table_name MODIFY

 (old_attr newDataType);

 Remove Attribute-

 ALTER TABLE table_name DROP COLUMN old_attr_name);

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 59

Remove table:

 DROP TABLE table_name;

Show table descriptions:

 DESC table_name;

To list all tables in current usename:

 SELECT * FROM tab;

Oracle Data-Type

• CHAR(n) : for fixed size of string.

• VARCHAR(n): for variable size of string up to n (limited size 256).

• VARCHAR2(n): for variable size of string up to n (unlimited size 4000).

• NUMBER(n,m):

• n is total participated digit, m is max digit after point(.)

• DATE: for date and time

Example:

CREATE TABLE customer

(

 cust_id NUMBER(4),

 cust_name VARCHAR2(30),

 dob DATE

);

Inserting Data into Table

INSERT INTO <table_name> [<column_lists>] VALUES (<value1>,

<value2>, …………….);

Using column name specification:

 INSERT INTO customer (custid, ename, sal) VALUES(‘E001’,’Vipin’,5000);

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 60

The columns not listed in the insert into command will have their default values

or null values.

Without column name specification:

 INSERT INTO emp1 VALUES(‘E001’,’Vipin’,5000);

Here the order of values matches the order of columns in the create table

command of the table and giving all values are compulsory.

Showing Records

• All Column + All Record

 SELECT * FROM tablename.

• Selected Column and all Records.

 SELECT col1,col2,---FROM tablename.

Update Record data

• UPDATE table_name SET column_name1=value, col_name2=value;

Affect on all reords.

Remove All Records

• DELETE FROM table_name;

 Only records remove not table.

Applying Constraints

• According to business rule, we apply some rules on column at the time of

column definition so that the entire record is rejected and not stored in the

table if violet applying constraints.

• NULL (default)

• NOT NULL

• UNIQUE

• PRIMARY KEY

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 61

• FOREIGN KEY

• CHECK

All constraint are defined at-

Column Level (At the time of column declaration)

Table Level (After declaration all column)

NOT NULL

• Columns become mandatory.

• Syntax:

 col_name DataType NOT NULL

• Can be used with many attributes.

• Always apply at column level.

• Ex:

 CREATE TABLE customer

 (

 name VARCHAR2(30) NOT NULL

)

UNIQUE Constraint

• A value in specified column never repeated w.r.t.. that domain. Can be

used with many attributes.

• Syntax: At column level

 col_name DataType UNIQUE

• Example:

 CREATE TABLE customer

 (phone VARCHAR2(10) UNIQUE,

 voterid NUMBER(12) UNIQUE

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 62

);

• Syntax: At Table Level

 UNIQUE(col1,col2,……)

• Example:

 CREATE TABLE customer

 (phone VARCHAR2(10) ,

 voterid NUMBER(12) ,

 UNIQUE(phone, voterid)

);

PRIMARY KEY Constraint

• Behave as a UNIQUE+ NOT NULL Constrains. Using More than one

PRIMARY KEY creates composite key.

• Syntax: At column level

 col_name DataType PRIMARY KEY

• Example:

 CREATE TABLE customer

 (custid NUMBER(5) PRIMARY KEY

);

• Syntax: At Table Level

 PRIMARY KEY(col1,col2,……)

• Example:

 CREATE TABLE customer

 (custid NUMBER(5) ,

 PRIMARY KEY (custid)

);

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 63

FOREIGN KEY Constraint

• Represent relationship between two tables, Master Table(have

PRIMARY KEY) and detail table(have FOREIGN KEY).

• In detail table, a column defined with FOREIGN KEY must be

PRIMARY KEY in Master table.

• Syntax: At column level

 col_name DataType REFERENCES mastertable_name

• Example:

 CREATE TABLE borrower

 (custid NUMBER(5) REFERENCES customer,

 loanid NUMBER(5) REFERENCES loan,

 PRIMARY KEY(custid, loanid)

);

• Syntax: At Table Level

 FOREIGN KEY (col_name) REFERENCES mastertable_name

• Example:

 CREATE TABLE borrower

 (custid NUMBER(5) ,

 loanid NUMBER(5),

 PRIMARY KEY(custid, loanid)

 FOREIGN KEY (custid) REFERENCES customer,

 FOREIGN KEY (custid) REFERENCES customer,

);

The CHECK constraints

• Business rule validations can apply. It use logical expression.

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 64

• Syntax: At Column Level

 col_name DataType CHECK (logical expression)

• Example:

 CREATE TABLE customer

 (salary NUMBER(10) CHECK (salary>=3000)

);

• Syntax: At Table Level

 CHECK (logical expression)

• Example:

 CREATE TABLE customer

 (salary NUMBER(10),

 CHECK (salary>=3000)

);

Operators

• Apply on attributes names and value.

Arithmetic: +,-,*,/

Gives numeric value.

Ex: SELECT name, “Incremented Income” income+1000 FROM customer.

Relational: <,>,<=,>=,=,<>

Gives Boolean value.

Logical: AND, OR, NOT

Range Searching: BETWEEN

Pattern Matching: LIKE (%, _)

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 65

WHERE clause

• Works on all records of given table name.

• It can be used with SELECT, UPDATE, DELETE

• It needs logical condition that consist using relational, logical, range and

pattern operator.

• Condition apply on each record, if satisfy then take action on that record.

This process continued at last.

Syntax: SELECT /UPDATE/DELETE part WHERE condition;

Relational Operator: (<,>,<=,>=,=,<>)

• Operate on attribute and value, gives true /false value.

• True means action part apply on that record.

• Ex: WHERE cuid=101;

 WHERE income>=10000;

 WHERE name=`name`;

Logical operator: (AND, OR, NOT)

• To combine more then one relational expression.

• AND: Both condition must be true.

 Ex: 9999 to 50000

 WHERE income>9999 AND income<50000

• OR: Either one condition must be true.

 Ex: less than 9999 or larger than 50000

 WHERE income<9999 OR income>50000

• NOT: Reverse logical condition value.

 Ex: not less than 9999

 WHERE NOT(income<9999)

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 66

Range Searching

• WHERE attr_name BETWEEN f AND l.

 f=first value l=last value

 Ex: in between 10000 to 50000 (both value included)

 WHERE income BETWEEN 10000 AND 50000

• It can be reverse using NOT operator.

 Ex: Not in between 10000 to 50000 (both value included)

 WHERE income NOT BETWEEN 10000 AND 50000

Pattern matching

• Apply only with string attribute.

• Possible using LIKE operator and wild card characters(%, _).

• Syntax:

 WHERE attr_name LIKE ‘string with wc’

• wc means wild card character % and _.

 % :matches zero or more mismatched character.

 _ :matches only one mismatched character.

• Ex: name begines with ja…..

 WHERE name LIKE ‘ja%’

• Ex: name begins with j and three are any one.

 WHERE name LIKE ‘j_ _ _’

• Both can be combined.

• Ex: First letter any one, second must be j and after it any length of

unmatched character.

 WHERE name LIKE ‘_j%’

DBMS & SQL Notes

Author: Mr. Lokesh Rathore (MCA, MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

P a g e | 67

IN & NOT IN

• = matches single value. IN matches more value.

• Syntax: WHERE attr_name IN (value1, value2,-----)

• Ex: Match only two given name.

 WHERE name IN(‘john’,’merry’)

• Can be reverse. Work on record exclude given value.

• Syntax:

 WHERE attr_name NOT IN (value1, value2,-----)

• Ex: Match only two given name.

• WHERE name NOT IN(‘john’,’merry’)

