
 

 

 

 

 

UNIT I: INTRODUCTION TO DIGITAL SIGNAL PROCESSING  

 

1.1 INTRODUCTION 

Signals constitute an important part of our daily life. Anything that carries some information     

is called a signal. A signal is defined as a single-valued function of one or more independent 

variables which contain some information. A signal is also defined as a physical quantity that varies 

with time, space or any other independent variable. A signal may be represented in time domain or 

frequency domain. Human speech is a familiar example of a signal. Electric current and voltage are 

also examples of signals. A signal can be a function of one or more independent variables. A signal 

may be a function of time, temperature, position, pressure, distance etc. If a signal depends on only 

one independent variable, it is called a one- dimensional signal, and if a signal depends on two 

independent variables, it is called a two- dimensional signal. 

A system is defined as an entity that acts on an input signal and transforms it into an output 

signal. A system is also defined as a set of elements or fundamental blocks which are connected 

together and produces an output in response to an input signal. It is a cause-and- effect relation 

between two or more signals. The actual physical structure of the system determines the exact 

relation between the input x (n) and the output y (n), and specifies the   output for every input. 

Systems may be single-input and single-output systems or multi-input and multi-output systems. 

Signal processing is a method of extracting information from the signal which in turn depends 

on the type of signal and the nature of information it carries. Thus signal processing     is concerned 

with representing signals in the mathematical terms and extracting information     by carrying out 

algorithmic operations on the signal. Digital signal processing has many advantages over analog 

signal processing. Some of these are as follows: 

Digital circuits do not depend on precise values of digital signals for their operation. Digital 

circuits are less sensitive to changes in component values. They are also less sensitive    to variations 

in temperature, ageing and other external parameters. 

In a digital processor, the signals and system coefficients are represented as binary words. This 

enables one to choose any accuracy by increasing or decreasing the number of     bits in the binary 

word. 

Digital processing of a signal facilitates the sharing of a single processor among a number of 

signals by time sharing. This reduces the processing cost per signal. 

Digital implementation of a system allows easy adjustment of the processor characteristics 

during processing. 

Linear phase characteristics can be achieved only with digital filters. Also multirate processing 

is possible only in the digital domain. Digital circuits can be connected in cascade without any 

loading problems, whereas this cannot be easily done with analog circuits. 

Storage of digital data is very easy.  Signals can be stored on various storage media such   as 

magnetic tapes, disks and optical disks without any loss. On the other hand, stored analog signals 

deteriorate rapidly as time progresses and cannot be recovered in their original form. 

Digital processing is more suited for processing very low frequency signals such as seismic 

signals. 

Though the advantages are many, there are some drawbacks associated with processing     a 

signal in digital domain. Digital processing needs ‘pre’ and ‘post’ processing devices like analog-to-

digital and digital-to-analog converters and associated reconstruction filters. This increases the 

complexity of the digital system. Also, digital techniques suffer from frequency limitations. Digital 

systems are constructed using active devices which consume power whereas analog processing 

algorithms can be implemented using passive devices which do      not consume power. Moreover, 

active devices are less reliable than passive components. But   the advantages of digital processing 

techniques outweigh the disadvantages in many applications. Also the cost of DSP hardware is 

decreasing continuously. Consequently, the applications of digital signal processing are increasing 

rapidly.



The digital signal processor may be a large programmable digital computer or a small 

microprocessor programmed to perform the desired operations on  the  input  signal.  It  may also be 

a hardwired digital processor configured to perform a specified set of operations on     the input 

signal. 

DSP has many applications. Some of them are: Speech processing, Communication, Biomedical, 

Consumer electronics, Seismology and Image processing. 

The block diagram of a DSP system is shown in Figure 1.1. 
 

Figure 1.1   Block diagram of a digital signal processing system . 

 
In this book we discuss only about discrete one-dimensional signals and consider only single-

input and single-output discrete-time systems. In this chapter, we discuss about various basic 

discrete-time signals available, various operations on discrete-time signals and classification of 

discrete-time signals and discrete-time systems. 

   1.2 REPRESENTATION OF DISCRETE-TIME SIGNALS 

Discrete-time signals are signals which are defined only at discrete instants of time.  For those 

signals, the amplitude between the two time instants is just not defined. For discrete-    time signal 

the independent variable is time n, and it is represented by x (n). 

There are following four ways of representing discrete-time signals: 

1. Graphical representation 

2. Functional representation 

3. Tabular representation 

4. Sequence representation 

 

1.2.1 Graphical Representation 
Consider a single x (n) with values 

X (-2) = -3, x(-1) = 2, x(0) = 0, x(1) = 3, x(2) = 1 and x(3) = 2 

This discrete-time single can be represented graphically as shown in Figure 1.2  

 

Figure 1.2   Graphical representation of discrete-time signal 

 

1.2.2 Functional Representation 

In this, the amplitude of the signal is written against the values of n. The signal given in    section 

1.2.1 can be represented using the functional representation as follows:



                                         

Another example is: 

X (n) = 2nu (n) 

  Or   x (n) = {
2𝑛 𝑓𝑜𝑟 𝑛 ≥ 0

0   𝑓𝑜𝑟  𝑛 < 0 

1.2.3 Tabular Representation 

In this, the sampling instant n and the magnitude of the signal at the sampling instant are represented 

in the tabular form. The signal given in section 1.2.1 can be represented in tabular form as follows: 

 

n  2  1 0 1 2 3 

x (n)  3 2 0 3 1 2 

1.2.4 Sequence Representation 

A finite duration sequence given in section 1.2.1 can be represented as follows: 

X(n) = {−3,2,0,3,1,2
↑

} 

   Another example is: 

X(n) = {
…2,3,0,1,−2…

↑ } 

The arrow mark ↑ denotes the n = 0 term. When no arrow is indicated, the first term corresponds 

to n = 0. 

   So a finite duration sequence, that satisfies the condition x(n) = 0 for n < 0 can be represented as: 

 

x(n) = {3, 5, 2, 1, 4, 7} 

 
SuN and product of discrete-tiNe sequences 

  The sum of two discrete-time sequences is obtained by adding the corresponding elements of 

sequences 

{Cn} = {an} + {bn} → Cn = an + bn 

The product of two discrete-time sequences is obtained by multiplying the corresponding 

elements of the sequences. 

{Cn} = {an}{bn} → Cn = anbn 

The multiplication of a sequence by a constant  k is obtained by multiplying each element of   the 

sequence by that constant. 

{Cn} = k{an} → Cn = kan 

1.3 ELEMENTARY DISCRETE-TIME SIGNALS



There are several elementary signals which play vital role in the study of signals and systems. 

These elementary signals serve as basic building blocks for the construction of more complex 

signals. Infact, these elementary signals may be used to model a large number of physical signals, 

which occur in nature. These elementary signals are also called standard signals. 

The standard discrete-time signals are as follows: 

1. Unit step sequence 

2. Unit ramp sequence 

3. Unit parabolic sequence 

4. Unit impulse sequence 

5. Sinusoidal sequence 

6. Real exponential sequence 

7. Complex exponential sequence 

 

1.3.1 Unit Step Sequence 

The step sequence is an important signal used for analysis of many discrete-time systems. It exists 

only for positive time and is zero for negative time.  It is equivalent to applying a signal whose 

amplitude suddenly changes and remains constant at the sampling instants forever after application. 

In between the discrete instants it is zero. If a step function has       unity magnitude, then it is 

called unit step function. 

The usefulness of the unit-step function lies in the fact that if we want a sequence to      start at 

n = 0, so that it may have a value of zero for n < 0, we only need to multiply the       given sequence 

with unit step function u (n). 

The discrete-time unit step sequence u (n) is defined as: 

U (n) = {
1 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑓𝑜𝑟 𝑛 < 0 

The shifted version of the discrete-time unit step sequence u(n – k) is defined as: 

U (n - k) = {
1 𝑓𝑜𝑟 𝑛 ≥ 𝑘
0 𝑓𝑜𝑟 𝑛 < 𝑘 

It is zero if the argument (n – k) < 0 and equal to 1 if the argument (n – k) S 0. 

The graphical representation of u (n) and u (n – k) is shown in Figure 1.3[(a) and (b)]. 

                         

Figure 1.3   Discrete–time (a) Unit step function (b) Shifted unit step function 

1.3.2 Unit Ramp Sequence 

  The discrete-time unit ramp sequence r (n) is that sequence which starts at n  =  0  and  increases 

  linearly with time and is defined as: 

r(n) = {
𝑛 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑓𝑜𝑟 𝑛 < 0 

or r(n)  = nu(n) 

 

It starts at n = 0 and increases linearly with n. 

The shifted version of the discrete-time unit ramp sequence r(n – k) is defined as: 

R(n – k) = {
𝑛 − 𝑘 𝑓𝑜𝑟 𝑛 ≥ 𝑘
0        𝑓𝑜𝑟 𝑛 < 𝑘

 

Or                                   r(n – k) = (n – k) u(n – k)



The graphical representation of r(n) and r(n – 2) is shown in Figure 1.4[(a) and (b)]. 

Figure 1.4   Discrete–time (a) Unit ramp sequence (b) Shifted ramp sequence. 

1.3.3 Unit Parabolic Sequence 

The discrete-time unit parabolic sequence p (n) is defined as: 

P (n) = {
𝑛2

2
 𝑓𝑜𝑟 𝑛 ≥ 0

0  𝑓𝑜𝑟  𝑛 < 0
 

Or    P(n) = 
𝑁2

2
 u(n) 

The shifted version of the discrete-time unit parabolic sequence p(n – k) is defined as: 

P(n – k) = {
(𝑛−𝑘)2

2
 𝑓𝑜𝑟 𝑛 ≥ 𝑘

0         𝑓𝑜𝑟 𝑛 <  𝑘
 

Or    p(n – k) = 
(𝑛−𝑘 )2

2
 u(n – k) 

The graphical representation of p(n) and p(n – 3) is shown in Figure 1.5[(a) and (b)].  

 

Figure 1.5   Discrete–time (a) ParaboFic sequence (b) Shifted paraboFic sequence. 

1.3.4 Unit Impulse Function or Unit Sample Sequence 

The discrete-time unit impulse function (n), also called unit sample sequence, is defined as: 

𝛿 (𝑛) =  {
1 𝑓𝑜𝑟 𝑛 = 0 
0 𝑓𝑜𝑟 𝑛 ≠ 0

 

This means that the unit sample sequence is a signal that is zero everywhere, except at n = 0, where its 

value is unity. It is the most widely used elementary signal used for the analysis of signals and systems. 

 

The shifted unit impulse function (n – k) is defined as: 

𝛿 (𝑛 − 𝑘) =  {
1 𝑓𝑜𝑟 𝑛 = 𝑘

0 𝑓𝑜𝑟 𝑛 ≠ 𝑘 
 

 The graphical representation of (n) and (n – k) is shown in Figure 1.6[(a) and (b)]. 

                                        

Figure 1.6   Discrete–time (a) Unit sample sequence (b) Delayed unit sample sequence.



    Properties of discrete-time unit sample sequence 
  

1. 𝛿(n) = u(n) – u(n – 1)  2. 𝛿(n – k) = {
1 𝑓𝑜𝑟 𝑛 = 𝑘
0 𝑓𝑜𝑟 𝑛 ≠ 𝑘

 

3. X(n) = ∑ 𝑥(𝑘)𝛿 (𝑛 − 𝑘)∞
𝑘= −∞  4. ∑ 𝑥(𝑛)𝛿 (𝑛 − 𝑛0

∞
𝑛= −∞ ) = x(n0) 

 

Relation Between The  Unit  Sample  Sequence  And The  Unit  Step Sequence 

   The unit sample sequence 𝛿(n) and the unit step sequence u(n) are related as: 

U(n) = ∑ 𝛿 (𝑚),𝑛
𝑚=0  𝛿(n) = u(n) – u(n - 1)  

  

  Sinusoidal Sequence 

 The discrete-time sinusoidal sequence is given by 

X(n) = A sin (𝜔𝑛 +  ∅) 

 Where A is the amplitude, is angular frequency, is phase angle in radians and n is an integer. 

The period of the discrete-time sinusoidal sequence is: 

N = 
2𝜋

𝜔
 𝑚 

Where N and m are integers. 

All continuous-time sinusoidal signals are periodic, but discrete-time sinusoidal sequences may 

or may not be periodic depending on the value of. 

For a discrete-time signal to be periodic, the angular frequency   must be a rational multiple of 2. 

  The graphical representation of a discrete-time sinusoidal signal is shown in Figure 1.7. 

 

Figure 1.7 Discrete-time sinusoidal signal 

1.3.6 Real Exponential Sequence 

The discrete-time real exponential sequence an is defined as: 

X(n) = an  for all n 

Figure 1.8 illustrates different types of discrete-time exponential signals. 

When a > 1, the sequence grows exponentially as shown in Figure 1.8(a).  

When 0 < a < 1, the sequence decays exponentially as shown in Figure 1.8(b). 

When a < 0, the sequence takes alternating signs as shown in Figure 1.8[(c) and 

(d)].



 

Figure 1.8 Discrete-time exponential signal an for (a) a > 1 (b) 0 < a < 1 (c) a < -1 (d) -1 < a < 0. 

 1.3.7 Complex Exponential Sequence 

The discrete-time complex exponential sequence is defined as: 

X(n)  = anej(𝜔0 n+∅) 

       = an cos(𝜔0𝑛 + ∅) + jan sin(𝜔0𝑛 = ∅) 

For |a| = 1, the real and imaginary parts of complex exponential sequence are sinusoidal.  

For |a| > 1, the amplitude of the sinusoidal sequence exponentially grows as shown in 

         Figure 1.9(a). 

For |a| < 1, the amplitude of the sinusoidal sequence exponentially decays as shown in  

Figure 1.9(b). 

   EXAMPLE 1.1 Find the following summations: 

 

(a)    ∑ 𝑒3𝑛∞
𝑛= −∞  𝛿 (𝑛 − 3)   (b)   ∑ 𝛿 (𝑛 − 2) cos 3𝑛∞

𝑛= − ∞  

 

   

Figure 1.9 complex exponential sequence x(n) = anej(𝜔0𝑛 + ∅) for (a)a > 1 (b) a < 1. 

(c )    ∑ 𝑛2 𝛿 (𝑛 + 4)∞
𝑛= −∞    (d)∑ 𝛿∞

𝑛= −∞  (n – 2)𝑒𝑛2
 

(e)     ∑ 𝛿 (𝑛 + 1)∞
𝑛=0  4𝑛 

Solution: 

(a) Given    ∑ 𝜹𝟑𝒏 𝜹(𝒏 − 𝟑)∞
𝒏=−∞



We know that 𝛿(𝑛 − 3) =  {
1      𝑓𝑜𝑟 𝑛 = 3
0    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  

∑ 𝑒3𝑛 𝛿 (𝑛 − 3) = [𝑒3𝑛]𝑛=3 = 𝑒9

∞

𝑛=−∞

 

(a) Given   ∑ 𝛿(𝑛 − 2) cos 3𝑛∞
𝑛=−∞  

We know that 𝛿(𝑛 − 2) =  {
1   𝑓𝑜𝑟 𝑛 = 2
0  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

∑ 𝛿(𝑛 − 2)𝑐𝑜𝑠3𝑛 = [cos 3𝑛]𝑛=2 = cos 6

∞

𝑛=−∞

 

 

(b) Given  ∑ 𝑛2 𝛿(𝑛 = 4)∞
𝑛=−∞  

We know that  𝛿(𝑛 = 4) =  {
1  𝑓𝑜𝑟 𝑛 = −4
0    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

∑ 𝑛2𝛿(𝑛 = 4) = [𝑛2]𝑛=−4 = 16

∞

𝑛=𝑛−∞

 

(c) Given  ∑ 𝛿(𝑛 − 2)𝑒𝑛2∞
𝑛=−∞  

We know that  𝛿(𝑛 − 2) =  {
1 𝑓𝑜𝑟 𝑛 = 2
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

∑ 𝛿(𝑛 − 2)𝑒𝑛2
= [𝑒𝑛2

]𝑛=2 = 𝑒22
= 𝑒4

∞

𝑛=−∞

 

(d) Given  ∑ 𝛿(𝑛 = 1)4𝑛∞
𝑛=0  

We know that  𝛿(𝑛 = 1) = {
1 𝑓𝑜𝑟 𝑛 = −1
0 𝑓𝑜𝑟 𝑛 ≠  −1

 

∑ 𝛿(𝑛 + 1)4𝑛 = 0

∞

𝑛=0

 

1.4 BASIC OPERATIONS ON SEQUENCES 

When we process a sequence, this sequence may undergo several manipulations involving the 

independent variable or the amplitude of the signal. 

The basic operations on sequences are as follows: 

1. Time shifting 

2. Time reversal 

3. Time scaling 

4. Amplitude scaling 

5. Signal addition 

6. Signal multiplication 

The first three operations correspond to transformation in independent variable n of a signal. 

The last three operations correspond to transformation on amplitude of a signal. 

  1.4.1 Time Shifting 

The time shifting of a signal may result in time delay or time advance. The time shifting operation 

of a discrete-time signal x(n) can be represented by 

y(n)  = x(n  – k) 

This shows that the signal y (n) can be obtained by time shifting the signal  x(n)  by k  units. If    k is 

positive, it is delay and the shift is to the right, and if k is negative, it is advance and the shift is to 

the left.



An arbitrary signal x(n) is shown in Figure 1.10(a). x(n – 3) which  is  obtained  by  shifting  

x(n) to the right by 3 units (i.e. delay x(n) by 3 units) is shown in Figure 1.10(b).        x(n + 2)  which  

is  obtained  by  shifting  x(n) to  the  left  by  2  units  (i.e. advancing x(n)  by 2 units) is shown in 

Figure 1.10(c). 

 

 

Figure 1.10 (a) Sequence x(n) (b) x(n – 3) (c) x(n + 2). 

1.4.2 Time Reversal 
The time reversal also called time folding of a discrete-time signal x(n) can be obtained by 

foldingthe sequence about n = 0. The time reversed signal is the reflection of the original 

signal. It is obtained by replacing the independent variable n by –n. Figure 1.11(a) shows an 

arbitrary discrete-time signal x(n), and its time reversed version x(–n) is shown in Figure 1.11(b). 

Figure 1.11[(c) and (d)] shows the delayed and advanced versions of reversed signal x(–n).  

The signal x(–n + 3) is obtained by delaying (shifting to the right) the time reversed 

signal x(–n) by 3 units of time. The signal x(–n – 3) is obtained by advancing (shifting to the 

left) the time reversed signal x(–n) by 3 units of time. 

Figure 1.12 shows other examples for time reversal of signals 

EXAMPLE 1.2 Sketch the following signals: 

(a) U(n+2) u(-n+3)    (b)  x(n) = u(n+4) – u(n-2) 

Solutions: 

(a) Given   x(n)=u(n+2) u(-n+3) 

The signal u (n + 2) u(–n + 3) can be obtained by first drawing the signal u(n + 2)      as shown in 
Figure 1.13(a), then drawing u (–n + 3) as shown in Figure 1.13(b), 

                    

 

       

Figure  1.11   (a) Original signal x(n)  (b) Time reversed signal x(-n)  (c) Time reversed and 

delayed  

  signal x(-n+3) (d) Time reversed and advanced signal x(-n-3).



          

          

 

Figure 1.12 Time reversal operations. 

 

and then multiplying these sequences  element  by element  to obtain u(n + 2) u(–n  + 3) as 

shown in Figure 1.13(c). 

x(n) = 0 for n < –2 and n  >  3; x(n) = 1 for –2 < n < 3 
 

(a) Given x(n) = u(n + 4) – u(n – 2) 

The signal u(n + 4) –  u(n – 2) can be obtained by first plotting u(n + 4) as shown      in 

Figure 1.14(a), then plotting u(n – 2) as shown in Figure 1.14(b), and then subtracting 

each element of u(n – 2) from the corresponding element of u(n + 4) to obtain the result 

shown in Figure 1.14(c). 

                                          

Figure 1.13   Plots of  (a) u(n +  2)  (b) u(–n +  3)  (c) u(n +  2) u(–n +  3). 

 

        



            

 Figure 1.14   Plots of  (a) u(n +  4)  (b) u(n –  2)  (c) u(n +  4)  – u(n –  2). 

1.4.3 Amplitude Scaling 

  The amplitude scaling of a discrete-time signal can be represented by 

y(n)  = ax(n) 

where a is a constant. 

The amplitude of y(n) at any instant is equal to a times the amplitude of x(n) at that  instant. If 

a > 1, it is amplification and if a < 1, it is attenuation. Hence the amplitude is rescaled. Hence the 

name amplitude scaling. 

Figure 1.15(a) shows a signal x(n) and Figure 1.15(b) shows a scaled signal y(n) = 2x(n). 

                                                  

 

1.4.1 Time Scaling 

Time scaling may be time expansion or time compression. The time scaling of a discrete-     time 

signal x(n) can be accomplished by replacing n by an in it. Mathematically, it can be expressed as: 

y(n)  = x(an) 

When a > 1, it is time compression and when a < 1, it is time expansion. 

Let x(n) be a sequence as shown in Figure 1.16(a). If a = 2, y(n) = x(2n). Then 

y(0) =  x(0)  = 1 

y(–1) =  x(–2)  = 3 

y(–2) =  x(–4)  = 0 

y(1) =  x(2)  = 3 

y(2) =  x(4)  = 0 

and so on. 

So to plot x(2n) we have to skip odd numbered samples in x(n). 

We can plot the time scaled signal y(n) = x(2n) as shown in Figure 1.16(b). Here the signal 

is 

        compressed by 2. 

If a = (1/2), y(n) = x(n/2), then 

y(0) =  x(0)  = 1 

y(2) =  x(1)  = 2 

y(4) =  x(2)  = 3 

y(6) =  x(3)  = 4 

y(8) =  x(4)  = 0 

y(–2) =  x(–1)  = 2 

y(–4) =  x(–2)  = 3 

y(–6) =  x(–3)  = 4 

y(–8) =  x(– 4)  = 0 

We can plot y(n) = x(n/2) as shown in Figure 1.16(c). Here the signal is expanded by 2.  All 

odd 

 components in x(n/2) are zero because x(n) does not have any value in between the sampling 

instants. 



                        
 

Figure 1.16   Discrete–time sca l i ng  (a )  P l ot  of  x (n )  (b)  P l ot  o f  x (2n ) ( c)  P l ot  of  x (n / 2 )  

Time scaling is very useful when data is to be fed at some rate and is to be taken out at a different 

rate. 

 

1.45 Signal Addition 

In discrete-time domain, the sum of two signals x1(n)  and x2(n) can be obtained by 

adding the corresponding sample values and the subtraction of x2(n) from x1(n) can be obtained 

by subtracting each sample of x2(n) from the corresponding sample of x1(n) as illustrated 

below. 

If x1(n) = {1, 2, 3, 1, 5} and x2(n) = {2, 3, 4, 1, –2} 

Then         x1(n) + x2(n) = {1 + 2, 2 + 3, 3 + 4, 1 + 1, 5 – 2} = {3, 5, 7, 2, 3} 

and x1(n) – x2(n) = {1 – 2, 2 – 3, 3 – 4, 1 – 1, 5 + 2} = {–1, –1, –1, 0, 7} 

  
  
1.4.6 Signal multiplication 

The multiplication of two discrete-time sequences can be performed by  multiplying  their  values at 

the sampling instants as shown below. 

If x1(n) = {1, –3, 2, 4, 1.5} and x2(n) = {2, –1, 3, 1.5, 2} 

Then  x1 (n) x2 (n) = {1 × 2,- 3 ×-1, 2 × 3, 4 × 1.5, 1.5 × 2} 

       = {2, 3, 6, 6, 3} 

EXAMPLE 1.3 Express the signals shown in Figure 1.17 as the sum of singular functions. 

Figure 1.17   Waveforms for Example 1.3 

Solution: 
(a) The given signal shown in Figure 1.17(a) is: 

                              x(n) = δ (n + 2) + δ (n + 1) + δ(n) + δ(n -1) 

                x(n) = {

0           𝑓𝑜𝑟 𝑛 ≤ −3
1    𝑓𝑜𝑟 − 2 ≤ 𝑛 ≤ 1

0 𝑓𝑜𝑟 𝑛 ≥ 2
   

∴                  x(n) = u(n+2) – u(n-2) 



(b) The signal shown in Figure 1.17(b) is:



              x(n) = 𝛿(n – 2) + 𝛿 (n – 3) + δ (n – 4) + δ (n – 5) 

              x(n) = {

0        𝑓𝑜𝑟 𝑛 ≤ 1
1 𝑓𝑜𝑟 2 ≤ 𝑛 ≤ 5
0         𝑓𝑜𝑟 𝑛 ≥ 6

 

∴                         x(n) = u(n – 2) – u(n – 6) 

1.4 CLASSIFICATION OF DISCRETE-TIME SIGNALS 

The signals can be classified based on their nature and characteristics in the time domain. They are 

broadly classified as: (i) continuous-time signals and (ii) discrete-time signals. 

The signals that are defined for every instant of time are known as continuous-time signals. 

The continuous-time signals are also called analog signals. They are denoted by x (t). They are 

continuous in amplitude as well as in time. Most of the signals available are continuous-time 

signals. 

The signals that are defined only at discrete instants of time are known as discrete-time signals. 

The discrete-time signals are continuous in amplitude, but discrete in time. For discrete- time signals, 

the amplitude between two time instants is just not defined. For discrete-time signals, the 

independent variable is time n. Since they are defined only at discrete instants of time, they are 

denoted by a sequence x (nT) or simply by x(n) where n is an integer. 

Figure 1.18 shows the graphical representation of discrete-time signals.  The discrete- time 

signals may be inherently discrete or may be discrete versions of the continuous-time signals. 

 

 

 

 
 

 

        

 

 

 

 

 

 

 

 

Figure 1.18 Discrete-time signals 
Both continuous-time and discrete-time signals are further classified as follows: 

1. Deterministic  and  random signals 

2. Periodic  and  non-periodic signals 

3. Energy and power signals 

4. Causal and non-causal signals 

5. Even and odd signals 

 

1.5.1 Deterministic and Random Signals 

A signal exhibiting no uncertainty of its magnitude and phase at any given instant of time is called 

deterministic signal. A deterministic signal can be completely represented by mathematical equation 

at any time and its nature and amplitude at any time can be predicted. 

Examples: Sinusoidal sequence x(n) = cos n, Exponential sequence  x(n)  =  ej  n, ramp  sequence 

x(n) = n. 

A signal characterized by uncertainty about its occurrence is called a non-deterministic    or 

random signal. A random signal cannot be represented by any mathematical equation. The behavior 

of such a signal is probabilistic in nature and can be analyzed only stochastically.   The pattern of 

such a signal is quite irregular. Its amplitude and phase at any time instant    cannot be predicted in 

advance. A typical example of a non-deterministic signal is thermal noise. 

 

1.5.2  Periodic and Non-periodic Sequences



A signal which has a definite pattern and repeats itself at regular intervals of time is called a periodic 

signal, and a signal which does not repeat at regular intervals of time is called a non-periodic or 

aperiodic signal. 

A discrete-time signal x(n) is said to be periodic if it satisfies the condition x(n) = x(n  + N)  for all 

integers n. 

The smallest value of N which satisfies the above condition is known as fundamental period. 

If the above condition is not satisfied even for one value of n,  then the discrete-time  signal 

is aperiodic. Sometimes aperiodic signals are said to have a period equal to infinity. 

The angular frequency is given by 

𝜔 =
2𝜋

𝑁
 

   Fundamental period                  N = 
2𝜋

𝜔
 

The sum of two discrete-time periodic sequence is always periodic. 

some examples of discrete-time periodic/non-periodic signals are shown in Figure 1.19. 

Figure 1.19 Example of discrete-time: (a) Periodic and (b) Non-periodic signals 

EXAMPLE 1.4 Show that the complex exponential sequence x(n) = ej  0n  is periodic only     if 

0/2 is a rational number. 

Solution: Given   x(n) = 𝑒𝑗𝜔0𝑛
 

X (n) will be periodic if x(n + N) = x(n) 

i.e.                                                    𝑒
𝑗[𝜔0(𝑛=𝑁0]

 = 𝑒
𝑗𝜔0𝑛   

i.e.                                                   𝑒
𝑗𝜔0𝑁

 𝑒𝑗𝜔0𝑛
=  𝑒

𝑗𝜔0𝑛 

This is possible only if          e j 0 N = 1 

This is true only if                                      𝜔0N = 2𝜋k 

 Where k is an integer      
𝜔0

2𝜋
 = 

𝑘

𝑁
  

 

 

1.5.3  Energy Signals And Power Signals  
 

Signals may also be classified as energy signals and power signals. However there are some 

signals which can neither be classified as energy signals nor power signals. 

The total energy E of a discrete-time signal x(n) is defined as: 

 

 
 

and the average power P of a discrete-time signal x(n) is defined as: 



A signal is said to be an energy signal if and only if its total energy  E  over the interval    (– 

∞, ∞) is finite (i.e., 0 < E < ∞). For an energy signal, average power P = 0. Non-periodic signals 

which are defined over a finite time (also called time limited signals)  are  the examples of energy 

signals. Since the energy of a periodic signal is always either zero or  infinite, any periodic signal 

cannot be an energy signal. 

A signal is said to be a power signal, if its average power P is finite (i.e., 0 < P < ∞). For  a 

power signal, total energy E = ∞. Periodic signals  are  the  examples  of  power  signals. Every 

bounded and periodic signal is a power signal. But it is true that a power signal is not necessarily a 

bounded and periodic signal. 

Both energy and power signals are mutually exclusive, i.e. no signal  can  be  both energy 

signal and power signal. 

The signals that do not satisfy the above properties  are  neither  energy  signals  nor  power 

signals. For example, x(n) = u(n), x(n) = nu(n), x(n) = n2u(n). 

These are signals for which neither P nor  E are finite. If the signals contain infinite  energy 

and zero power or infinite energy and infinite power, they  are  neither  energy  nor power signals. 

If the signal amplitude becomes zero as |n| → ∞, it is  an  energy  signal,  and  if  the signal 

amplitude does not become zero as |n| → ∞, it is a power signal. 

 

 Causal and Non-causal Signals 

A discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0, otherwise the signal is non-

causal. A discrete-time signal x(n) is said to be anti-causal if x(n) = 0 for n > 0. 

A causal signal does not exist for negative time and an anti-causal signal does not exist   for 

positive time. A signal which exists in positive as well as negative time is called a  non-casual 

signal. 

u(n) is a causal signal and u(– n)  an anti-causal signal, whereas x(n) = 1 for – 2 ≤ n ≤ 3  is a 

non-causal signal. 

 

 
 Even and Odd Signals 

 
Any signal x(n) can be expressed as sum of even and odd components. That is 

x(n) =  xe(n)  + xo(n) 

where xe(n) is even components and xo(n) is odd components of the signal. 
 

Even (syMMetric) signal 

A discrete-time signal x(n) is said to be an even (symmetric) signal if it satisfies the condition: 

x(n) = x(–n) for  all n 

Even signals are symmetrical about the vertical axis or time origin. Hence they are also called 

symmetric signals: cosine sequence is an example of  an  even  signal.  Some  even  signals are 

shown in Figure 1.20(a). An even signal is identical to its reflection about the    origin. For an even 

signal x0(n) = 0. 

 

Odd (anti-syMMetric) signal 

A discrete-time signal x(n) is said to be an odd (anti-symmetric) signal if it satisfies the condition: 

x(–n) = –x(n) for  all n 

Odd signals are anti-symmetrical about the vertical axis. Hence they are called anti- symmetric 

signals. Sinusoidal sequence is an example of an odd signal. For an odd signal     xe(n) = 0. Some 

odd signals are shown in Figure 1.20(b). 



 

 
 

 

  

Figure 1.20   (a) Even sequences (b) Odd sequences.



 

 

Thus, the product of two even signals or of two odd signals is an even signal, and the 

product of even and odd signals is an odd signal. 

Every signal need not be either purely even signal or  purely  odd  signal,  but  every  

signal can be decomposed into sum of even and odd parts. 

 
 

 

 CLASSIFICATIOK OF DISCRETE-TImE SYSTEmS 

A system is defined as an entity that acts on an input signal and transforms it into an output 

signal. A system may also be defined as a set of elements or functional blocks which are 

connected together and produces an output in response to an input signal. The response or  

output of the system depends on the transfer function of the system. It is a cause and effect 

relation between two or more signals. 

As signals, systems are also broadly classified into continuous-time and discrete-time 

systems. A continuous-time system is one which  transforms  continuous-time  input  signals 

into continuous-time output signals, whereas a discrete-time system is one which transforms 

discrete-time input signals into discrete-time output signals. 

For example microprocessors, semiconductor memories, shift registers, etc. are discrete- 

time systems. 

A discrete-time system is represented by a block diagram as shown in Figure 1.22. An 

arrow entering the box is the input signal (also called excitation, source or driving function)   

and an arrow leaving the box is an output signal (also called response). Generally, the input       

is denoted by x(n) and the output is denoted by y(n).



 

 

The relation between the input x(n) and the output y(n) of a system has the form: 

y(n)  =  Operation on x(n) 

Mathematically, 

y(n) = T[x(n)] 

which represents that x(n) is transformed to y(n). In other words, y(n)  is  the  transformed 

version of x(n). 
 

Figure 1.22   BFock diagram of discrete–time system. 

 
Both continuous-time and discrete-time systems are further classified as follows: 

1. Static (memoryless) and dynamic (memory) systems 

2. Causal and non-causal systems 

3. Linear and non-linear systems 

4. Time-invariant and time varying systems 

5. Stable and unstable systems. 

6. Invertible and non-invertible systems 

7. FIR and IIR systems 

 
 Static and Dynamic Systems 

A system is said to be static or memoryless if the response is due to present input alone, i.e.,    

for a static or memoryless system, the output at any instant n depends  only  on  the  input 

applied at that instant n but not on the past or future values of input or past values of output. 

For example, the systems defined below are static or memoryless systems. 

y(n) = x(n) 

y(n) = 2x2(n) 

In contrast, a system is said to be dynamic or memory system if the response depends upon    

past or future inputs or past outputs. A summer or accumulator, a delay element is a discrete- 

time system with memory. 

For example, the systems defined below are dynamic or memory systems. 

y(n) = x(2n) 

y(n) = x(n) + x(n – 2) 

y(n) + 4y(n – 1) + 4y(n – 2) = x(n) 

Any discrete-time system described by a difference equation is a dynamic system. 

A purely resistive electrical circuit is a static system, whereas an electric circuit having 

inductors and/or capacitors is a dynamic system.



 

 

A discrete-time LTI  system is memoryless (static) if its impulse response  h(n) is zero     

for n s 0. If the impulse response is not identically zero for n s 0, then the system is called 

dynamic system or system with memory. 

 

EXAMPLE 1.12 Find whether the following systems are dynamic or not: 

(a)   y(n)  =  x(n + 2) (b) y(n) = x2(n) 

(c) y(n) = x(n – 2) + x(n) 

Solution: 

(a) Given y(n) = x(n + 2) 

The output depends on the future value of input. Therefore, the system is dynamic. 

(b) Given y(n) = x2(n) 

The output depends on the present value of input alone. Therefore, the system is  

static. 

(c) Given y(n) = x(n – 2) + x(n) 

The system is described by a difference equation. Therefore, the system is dynamic. 

 
 Causal and Non-causal Systems 

A system is said to be causal (or non-anticipative) if the output of the system at any instant         

n depends only on the present and past values of the input but not on future inputs, i.e., for          

a causal system, the impulse response or output does not begin before the input  function  is 

applied, i.e., a causal system is non anticipatory. 

Causal systems are real time systems. They are physically realizable. 

The impulse response of a causal system is zero for n < 0, since (n) exists only at n = 0, 

i.e. h(n) = 0 for n < 0 

The examples for causal systems are: 

y(n)  = nx(n) 

y(n) = x(n – 2) + x(n – 1)  +  x(n) 

A system is said to be non-causal (anticipative) if the output of the system at any instant n 

depends on future inputs. They are anticipatory systems. They produce an output even before  

the input is given. They do not exist in real time. They are not physically realizable. 

A delay element is a causal system, whereas an image processing system is a non-causal 

system. 

The examples for non-causal systems are: 

y(n) = x(n) + x(2n) 

y(n) = x2(n) + 2x(n + 2)



 

 

EXAMPLE 1.13 Check whether the following systems are causal or not:

(a) 
 

 

y(n) x(n) x(n 2) (b) y(n) = x(2n)

(c)    y(n) = sin[x(n)] (d) y(n) = x(–n) 

Solution:

(a) Given 

For n = –2 

For n = 0 

For n = 2 

 
 

y(n) x(n) x(n 2) 
 

 

y( 2) x( 2) x( 4) 
 

 

y(0) x(0) x( 2) 
 

 

y(2) x(2) x(0)

For all values of n, the output depends only on the present and past inputs. 

Therefore, the system is causal.

(a) Given 

For n = –2 

For n = 0 

For n = 2 

 
 

y(n)    x(2n) 
 

 

y(  2)     x( 4) 
 

 

y(0)    x(0) 
 

 

y(2)    x(4)

For positive values of n, the output depends on the future  values  of  input. 

Therefore, the system is non-causal.

(a) Given 

For n = –2 

For n = 0 

For n = 2 

 
 

y(n) sin [x(n)] 
 

 

y( 2) sin [x( 2)] 
 

 

y(0)    sin [x(0)] 
 

 

y(2)    sin [x(2)]

For all values of n, the output depends only on the present value of input. Therefore, 

the system is causal. 
 

(d) Given y(n) = x(–n) 

 
 

For n = –2 y( 2) x(2) 

 For n = 0 y(0) x(0) 

 For n = 2 y(2) x( 2) 

For negative values of n, the output depends on the future values of  input. 

Therefore, the system is non-causal. 

 
 Linear and Non-linear Systems 

A system which obeys the principle of superposition and principle of homogeneity is called        

a linear system and a system which does not obey the principle of superposition and 

homogeneity is called a non-linear system. 

Homogeneity property means a system which produces an output y(n) for an input x(n) 

must produce an output ay(n) for an input ax(n).
 

Superposition property means a system which produces an output  y1(n)  for  an  input 

x1(n) and an output y2(n) for an input x2(n) must produce an output y1(n) + y2(n) for an input 

x1(n) + x2(n). 

Combining them we can say that a system is linear if an arbitrary input x1(n)  produces    

an output y1(n)  and an arbitrary input x2(n)  produces an output y2(n), then the weighted sum    

of inputs ax1(n)  + bx2(n) where a and b are constants produces an output  ay1(n)  + by2(n)  
which is the sum of weighted outputs. 



 

 

T(ax1(n) + bx2(n)] = aT[x1(n)] + bT[x2(n)] 

Simply we can say that a system is linear if the output due to weighted sum of inputs is        

equal to the weighted sum of outputs. 

In general, if the describing equation contains square or higher order  terms  of  input 

and/or output and/or product of input/output and its difference or a constant, the system will 

definitely be non-linear. 

 
 Shift-invariant and Shift-varying Systems 

Time-invariance is the property of a system which makes the behaviour of the system 

independent of time. This means that the behaviour of the system does not depend on the       

time at which the input is applied. For discrete-time systems, the time invariance property is 

called shift invariance. 

A system is said to be shift-invariant if its input/output characteristics do not change     

with time, i.e., if a time shift in the input results in a corresponding time shift in the output        

as shown in Figure 1.23, i.e. 

If T[x(n)] = y(n) 

Then T[x(n – k)] = y(n – k) 

A system not satisfying the above requirements is called a time-varying system (or  shift- 

varying system). A time-invariant system is also called a fixed system. 

The time-invariance property of the given discrete-time system can  be  tested  as 

follows: 

Let x(n) be the input and let x(n – k) be the input delayed by k units. 

y(n) = T[x(n)] be the output for the input x(n). 

 
 Stable and Unstable Systems 

A bounded signal is a signal whose magnitude is always a finite value, i.e. x (n) ≤ M , where

M is a positive real finite number. For example a sinewave is a bounded signal. A system is   

said to be bounded-input, bounded-output (BIBO) stable, if and only if every bounded input 

produces a bounded output. The output of such a system does not diverge or does not grow 

unreasonably large. 

Let the input signal x(n) be bounded (finite), i.e.,

x (n) ≤  Mx for all n

where Mx is a positive real number. If 

y (n) 

 

≤   My  ≤∞    

i.e. if the output  y(n) is also bounded, then the system is BIBO stable. Otherwise, the system     

is unstable. That is, we say that a system is unstable even if one bounded input produces an 

unbounded output. 

It is very important to know about the stability of the system. Stability indicates the 

usefulness of the system. The stability can be found from the impulse response of the system 

which is nothing but the output of the system for a unit  impulse  input.  If  the  impulse  

response is absolutely summable for a discrete-time system, then the system is stable. 

 

BlBO stability criterion 

The necessary and sufficient condition for a discrete-time system to be BIBO stable is given    

by the expression: 



 

where h(n) is the impulse response of the system. This is called BIBO stability criterion. 

Proof: Consider a linear time-invariant system with x(n) as  input  and y(n) as output. The    

input and output of the system are related by the convolution integral. 
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