ASSEMBLER DIRECTIVES

» Assembler directives are the commands to the assembler that direct the assembly process.

» They indicate how an operand is treated by the assembler and how assembler handles the program.
» They also direct the assembler how program and data should arrange in the memory.

> ALP's are composed of two type of statements.

(i) The instructions which are translated to machine codes by assembler.
(i) The directives that direct the assembler during assembly process, for which no machine code is generated.

1. ASSUME: Assume logical segment name.

The ASSUME directive is used to inform the assembler the names of the logical segments to be assumed for different
segments used in the program .In the ALP each segment is given name.

Syntax: ASSUME segreg:segname,...segreg:segname
Ex: ASSUME CS:CODE

ASSUME CS:CODE,DS:DATA,SS:STACK

Scanned with CamScanner

2. DB: Define Byte
The DB directive is used to reserve byte or bytes of memory locations in the available memory.
Syntax: Name of variable DB initialization value.
Ex: MARKS DB 35H,30H,35H,40H
NAME DB “VARDHAMAN"
3. DW: Define Word

The DW directive serves the same puposes as the DB directive,but it now makes the assembler reserve the number of
memory words(16-bit) instead of bytes.

Syntax: variable name DW initialization values.
Ex: WORDS DW 1234H,4567H,2367H
WDATA DW 5 Dup(522h)
(or) Dup(?)
4. DD: Define Double:
The directive DD is used to define a double word (4bytes) variable.
Syntax: variablename DD 12345678H
Ex: Datal DD 12345678H
5. DQ: Define Quad Word

This directive is used to direct the assembler to reserve 4 words (8 bytes) of memory for the specified variable and
may initialize it with the specified values.

Syntax: Name of variable DQ initialize values.
Ex: Datal DQ 123456789ABCDEF2H
6. DT: Define Ten Bytes

The DT directive directs the assembler to define the specified variable requiring 10 bytes for its storage and initialize
the 10-bytes with the specified values.

Syntax: Name of variable DT initialize values.

Ex: Datal DT 12345678SABCDEF34567H
7. END: End of Program
The END directive marks the end of an ALP. The statement after the directive END will be ignored by the assembler.
8. ENDP: End of Procedure

The ENDP directive is used to indicate the end of procedure. In the AL programming the subroutines are called
procedures.

Ex: Procedure Start

Start ENDP

Scanned with CamScanner

9. ENDS: End of segment
The ENDS directive is used to indicate the end of segment.

Ex: DATA SEGMENT

DATA ENDS
10.EVEN: Align on Even memory address
The EVEN directives updates the location counter to the next even address.
Ex: EVEN

Procedure Start

Start ENDP
» The above structure shows a procedure START that is to be aligned at an even address.
11.EQU: Equate
The directive EQU is used to assign a label with a value or symbol.
Ex: LABEL EQU 0500H
ADDITION EQU ADD
12_EXTRN: External and public

» The directive EXTRN informs the assembler that the names, procedures and labels declared after this directive have
been already defined in some other AL modules.

» While in other module, where names, procedures and labels actually appear, they must be declared public using
the PUBLIC directive.

Ex: MODULE1 SEGMENT

PUBLIC FACT FAR

MODULE1 ENDS

MODULE2 SEGMENT

EXTRN FACT FAR

MODULE2 END

13.GROUP: Group the related segments

This directive is used to form logical groups of segments with similar purpose or type.
Ex: PROGRAM GROUP CODE, DATA, STACK

*CODE, DATA and STACK segments lie within a 64KB memory segment that is named as PROGRAM.
14.LABEL: |abel

The label is used to assign name to the current content of the location counter.

Scanned with CamScanner

Ex: CONTINUE LABEL FAR

The label CONTINUE can be used for a FAR jump, if the program contains the above statement.
15.LENGTH: Byte length of a label

This is used to refer to the length of a data array or a string

Ex : MOV CX, LENGTH ARRAY

16.LOCAL: The labels, variables, constant or procedures are declared LOCAL in a module are to be used only by the
particular module.

Ex : LOCAL 3, b, Datal, Array, Routine
17.NAME: logical name of a module

The name directive is used to assign a name to an assembly language program module. The module may now be refer
to by its declared name.

Ex : Name “addition”
18.0FFSET: offset of a label

When the assembler comes across the OFFSET operator along with a label, it first computing the 16-bit offset address
of a particular label and replace the string ‘OFFSET LABEL' by the computed offset address.

Ex : MOV S|, offset list
19.0RG: origin

The ORG directive directs the assembler to start the memory allotment for the particular segment, block or code from
the declared address in the ORG statement.

Ex: ORG 1000H
20.PROC: Procedure
The PROC directive marks the start of a named procedure in the statement.
Ex: RESULT PROC NEAR
ROUTINE PROC FAR
21.PTR: pointer
The PTR operator is used to declare the type of a label, variable or memory operator.
Ex : MOV AL, BYTE PTR [SI]
MOV BX, WORD PTR [2000H]
22.SEG: segment of a label
The SEG operator is used to decide the segment address of the label, variable or procedure.
Ex : MOV AX, SEG ARRAY
MOV DS, AX
23.SEGMENT: logical segment

The segment directive marks the starting of a logical segment

Scanned with CamScanner

Ex: CODE SEGMENT

CODE ENDS

24.SHORT: The SHORT operator indicates to the assembler that only one byte is required to code the displacement for
jump.

Ex : IMP SHORT LABEL

25.TYPE: The TYPE operator directs the assembler to decide the data type of the specified label and replaces the TYPE
label by the decided data type.

For word variable, the data type is 2.
For double word variable, the data type is 4.
For byte variable, the data type is 1.

Ex : STRING DW 2345H, 4567H

MOV AX, TYPE STRING

AX=0002H

26.GLOBAL: The labels, variahles, constants or procedures declared GLOBAL may be used by other modules of the
program.

Ex : ROUTINE PROC GLOBAL.

27.FAR PTR: This directive indicates the assembler that the label following FAR PTR is not available within the same
segment and the address of the label is of 32-bits i.e 2-bytes of offset followed by 2-bytes of segment address.

Ex : IMP FAR PTR LABEL

28.NEAR PTR: This directive indicates that the label following NEAR PTR is in the same segment and needs only 16-bit
i.e 2-byte offset to address it

Ex : JMP NEAR PTR LABEL
CALL NEAR PTR ROUTINE

Pracedures and Macros:

» When we need to use a group of instructions several times throughout a program there are two ways we can avoid
having to write the group of instructions each time we want to use them.
1. One way is to write the group of instructions as a separate procedure.
2. Another way we can use macros.

Procedures:

» The procedure is a group of instructions stored as a separate program in the memory and it is called from the
main program whenever required using CALL instruction.

> For calling the pracedure we have tao store the return address (next instruction address followed by CALL) onto
the stack.

» Atthe end of the procedure RET instruction used to return the execution to the next instruction in the main
program by retrieving the address from the top of the stack.

Scanned with CamScanner

Y

»

»

»

> Machine codes for the procedure instructions put only once in memory,

» The procedure can be defined anywhere in the program using assembly directives PROC and ENDP.

Format of procedure In BOBRG.

o
CALL P AME - P_MNAME PROC FAR/NEAR
1
1
. RET
oD P_NAME ENDP

(D Return address is saved in stack.
Program branches to P_NAME.

@& Return address is retrieved from stack.
Program branches to main program.

The four major ways of passing parameters to and from a procedure are:
1. In registers
2. In dedicated memory location accessed by name
3 .With pointers passed in registers
4. With the stack
The type of procedure depends on where the procedure is stored in the memory.
If it is in the same code segment where the main program is stored the it is called near procedure otherwise it is
referred to as far procedure.
For near procedure CALL instruction pushes only the IP register contents on the stack, since CS register contents
remains unchanged for main program.
But for Far procedure CALL instruction pushes both IP and CS on the stack.

Syntax:

Procedure name PROC near

instruction 1

instruction 2

RET

Procedure name ENDP

Example:

near procedure: far procedure:

ADD2 PROC near Procedures segment
ADD AX,BX Assume CS : Procedures
RET ADD2 PROC far

ADD2 ENDP ADD AX,BX

RET ADD2 ENDP

Procedures ends

Scanned with CamScanner

»

» Depending on the characteristics the procedures are two types
1. Re-entrant Procedures

2. Recursive Praocedures

Reentrant Procedures

[

» The procedure which can be interrupted, used and “reentered” without losing or writing over anything.

REENTRANT PROCIEDURIES

g INTERRLUPT PROCTINCIE

CATE APUETINE /.ul,;l/

Creruae Lrie

CALL AMULTIPLY

Retuan to Tntessugited

Next Maln Line
Paowuanm

Tapatigcticn aftes call

Rrnuirey to Callal
Prowiam

Recursive Procedure
» Arecursive procedure is procedure which calls itself.

Contd..

= Flow diagram for N=3

Procedine Mocedure Muoceduse

SMAIN LINE FACTO FACTO FACTO

CALL FACTO

Wext Aain Lane

lostsuction nRET

RET WITH 1!
v RET wrrs 2!
WITHLO !

5 -

ALP for Finding Factorial of number using procedures
CODE SEGMENT
ASSUME CS:CODE
START: MOV AX,7
CALL FACT

MOV AH,4CH

INT 21H

FACT PROC NEAR
MOV BX,AX

DEC BX

BACK: MUL BX
DEC BX

JNZ BACK

RET

ENDP

CODE ENDS
END START

Scanned with CamScanner

