7.Control Transfer or Branching Instruction:

The control transfer instructions transfer the flow of execution of the program to a new address specified in the
instruction directly or indirectly. When this type of instruction is executed, the CS and IP registers get loaded with new
values of CS and IP corresponding to the location where the flow of execution is going to be transferred.

This type of instructions are classified in two types:
i Unconditional control Transfer (Branch) Instructions:
In case of unconditional control transfer instructions; the execution control is transferred to the specified location
independent of any status or condition. The CS and IP are unconditionally modified to the new CS and IP.
iii. Conditional Control Transfer (Branch) Instructions:
In the conditional control transfer instractions, the control is transferred to the specified location provided the
result of the previous operation satisfies a particular condition, otherwise, the execution continues in narmal flow
sequence. The results of the previous operations are replicated by condition code flags. In other words, using type
of instruction the control will be transferred to a particular specified location, if a particular flag satisfies the
condition.

Unconditional Branch Instructions:

CALL RET JUMP IRET

INTN INTO LOOP

Scanned with CamScanner

CALL: Unconditional Call: This instruction is used to call a subroutine procedure from a main program. The address of
the procedure may specify directly or indirectly depending on the address mode.

There are again two types of procedures depending on whether it is available in the same segment (Near CALL, i.e. +
2K displacement) or in another segment (Far CALL, i.e. anywhere outside the segment). The modes for them are
respectively called as intrasegment and intersegment addressing (i.e. address of the next instruction) and CS onto the
stack along with the flags and loads the CS and IP registers, respectively, with the segment and offset addresses of the
procedure to be called.

RET: Return from the Procedure: At each CALL instruction, the IP and CS of the next instruction is pushed onto stack,
before the control is transferred to the procedure. At the end of the procedure, the RET instruction must be executed.
When it is executed, the previously stored content of IP and CS along with flags are retrieved into the CS, IP and flag
registers from the stack and the execution of the main program continues further. In case of a FAR procedure the
current contents of SP points to IP and CS at the time of return. While in case of a NEAR procedure, it points to only IP.
Depending on the byte of procedure and the SP contents, the RET instruction is of four types:

i Return within a segment.

ii. Return within a segment adding 16-bit immediate displacement to the SP contents.

iii. Return intersegment.

iv. Return intersegment adding 16-bit immediate displacement to the SP contents.

INT N: Interrupt Type N: In the interrupt structure of 8086/8088, 256 interrupts are defined corresponding to the
types from O0OH to FFH. When an INT N instruction is executed, the TYPE byte N is multiplied by 4 and the contents of
IP and CS of the interrupt service routine will be taken from the hexadecimal multiplication (N * 4) as offset address
and 0000 as segment address. In other words, the multiplication of type N by 4 (offset) points to a memory block in
0000 segment, which contains the IP and CS values of the interrupt service routine. For the execution of this
instruction, the IP must be enabled.

Ex: The INT 20H will find out the address of the interrupt service routine follows:
INT 20H
Type *4=20X4=80H
Painter to IP and CS of the ISR is 0000:0080H
The arrangement of CS and IP addresses of the ISR in the interrupt rector table is as follows.

INTO: Interrupt on averflow: This is executed, when the overflow flag OF is set. The new contents of IP an CS are
taken from the address 0000:0000 as explained in INT type instruction. This is equivalent to a type 4 instruction.

JMP: Unconditional Jump: This instruction uncaonditionally transfer the control of execution to the specified address
using an 8-bit or 16-bit displacement {intrasegment relative, short or long) or CS:IP (intersegment direct for) No flags
are affected by this instruction. Corresponding to the three methods of specifying jump address, the JUMP instruction
has the following three formats.

JUMP DISP 8-bit Intrasegment, relative, near jump
JUMP DISP 16-bit DISP 16-bit Intrasegment, relative, For jump
JUMP| IP{LB) IP(UB) CS(LB) CS{UB) Intersegment, direct, jump

IRET: Return from ISR: When interrupt service routine is to be called, before transferring control to it, the IP, CS and
flag register are stored on to the stack to indicate the location from where the execution is to be continued, after the
ISR is executed. So, at the end of each ISR, when IRET is executed, the valuesof IP, CS and flags are retrieved from the
stack to continue the execution of the main program. The stack is modified accordingly.

Scanned with CamScanner

LOOP: Loop unconditionally: This instruction executes the part of the program from the label or address specified in
the instruction up to the loop instruction, CX number of times. At each iteration, CX is decremented automatically, in
other words, this instruction implements DECREMENT counter and JUMP IF NOT ZERO structure.

Ex:
MOV CX,0005H ; Number of times in CX
MOV BX, OFF7H ; Data to BX
Label MOV AX, CODE1
OR BX,AX
AND DX,AX
LOOP Label
The execution proceeds in sequence, after the loop is executed, CX number of times. IF CX is already OOH, the
execution continues sequentially. No flags are affected by this instruction.
Conditional Branch Instructions:
| LOOPE/LOOPZ | LOOPNE/LOOPNZ [

When these instructions are executed, they transfer execution control to the address specified relatively in the
instruction, provided the condition in the opcode is satisfied, otherwise, the execution continues sequentially. The
conditions, here means the status of the condition code flags. These type of instructions don’t affect any flags. The
address has to be specified in the instruction relatively in terms of displacement, which must lie within — 80H to 7FH
(or =128 to 127) bytes from the address of the branchk instruction. In other words, only short jumps can be
implemented using conditional branch instructions. A label may represent the displacement, if it has within the above-
specified range.

The different 8086/8088 conditional branch instructions and their operations are listed in Tablel

SL.No Mnemonic Displacement Operation

1 1Z/1E Label Transfer execution control to address
‘Label’, if ZF=1

2 IJNZ/INE Label Transfer execution control to address
‘Label’, if ZF=0

3 1S Label Transfer execution control to address
‘Label’, if SF=1

4 INS Label Transfer execution control to address
‘Label’, if SF=0

5 10 Label Transfer execution control to address
‘Label’, if OF=1

6 INO Label Transfer execution control to address
‘Label’, if OF=0

7 IP/IPE Label Transfer execution control to address
‘Label’, if PF=1

8 INP Label Transfer execution control to address
‘Label’, if PF=0

9 IB/INAE/IC Label Transfer execution control to address
‘Label’, if CF=1

10 INB/INE/INC Label Transfer execution control to address
‘Label’, if CF=0

11 IBE/INA Label Transfer execution control to address
‘Label’, if CF=1 or ZF=1

12 INBE/IA Label Transfer execution control to address
‘Label’, if CF=0 or ZF=0

13 IL/INGE Label Transfer execution control to address
‘Label’, if neither SF=1 nor OF=1

14 INL/IGE Label Transfer execution control to address
‘Label’, if neither SF=D nor OF=0

15 JNE/INC Label Transfer execution control to address

Scanned with CamScanner

‘Label’, if ZF=1or neither SF nor QF is 1

16 INLE/JE Label Transfer execution control to address
‘Label’, if ZF=0 or at least any are of SF &
OFis 1

Table:1 Conditional branch instructions.
8. Flag Manipulation and Processor Caontrol Instructions:
These instructions control the functioning of the available hardware inside the processor chip.
These are categorized into 2 types:
a) flag manipulation instructions
b) Machine control instructions.
The flag manipulation instructions directly modify same of the flags of 8086.
The flag manipulation instructions and their functions are as follows:

CLC —clear carry flag

CMC - Complement carry flag
STC —Set carry flag

CLD —clear direction flag

STD - Set direction flag

CU —clear interrupt flag

STl —Set interrupt flag

These instructions modify the carry (CF), Direction {DF) and interrupt (IF) flags directly. The DF and IF, which may be
the processor operation; like interrupt responses and auto increment or auto-decrement modes. Thus the respective
instructions may also be called as machine or processor control instructions, The other flags can be modified using
POPF and SAHF instructions, which are termed as data transfer instructions. No direct instructions are available for
modifying the status flags except carry flags. The machine control instructions don’t require any operational.

The machine control instructions supported by 8086/8088 are listed as follows along with their functions:
WAIT - Wait for Test input pin to go low
HLT —Halt the processor

NOP —No operation

ESC — Escape to external device like NDP
LOCK - Bus lock instruction prefix.

ASSEMBLER DIRECTIVES

» Assembler directives are the commands to the assembler that direct the assembly process.

» They indicate how an operand is treated by the assembler and how assembler handles the program.
» They also direct the assembler how program and data should arrange in the memory.

» ALP's are composed of two type of statements.

(i) Theinstructions which are translated to machine codes by assembler.
(ii) The directives that direct the assembler during assembly process, for which no machine code is generated.

1. ASSUME: Assume logical segment name.

The ASSUME directive is used to inform the assembler the names of the logical segments to be assumed for different
segments used in the program .In the ALP each segment is given name.

Syntax: ASSUME segreg:segname,...segreg:segname
Ex: ASSUME CS:CODE

ASSUME CS:CODE,DS:DATA,SS:STACK

Scanned with CamScanner

