Stack and Subroutines

Stack is a set of memory locations in the Read/Write memory which is used for temporary
storage of binary information during the execution of a program. It is implemented in the Last-
in-first-out (LIFO) manner. i.e., the data written first can be accessed last, One can put the data
on the top of the stack by a special operation known as PUSH. Data can be read or taken out
from the top of the stack by another special instruction known as POP.

Scanned with CamScanner

Stack is implemented in two ways. In the first case, a set of registers is arranged in a
shift register organization. One can PUSH or POP data from the top register. The whole block of
data moves up or down as a result of push and pop operations respectively. In the second
case, a block of RAM area is allocated to the stack. A special purpose register known as stack
pointer (SP) points to the top of the stack. Whenever the stack is empty, it points to the bottom
address. If a PUSH operation is performed, the data are stored at the location pointed to by SP
anditis

decremented by one. Similarly if the POP operation is performed, the data are taken out of the
location pointed at by SP and SP is incremented by one. In this case the data do not move but
SP is incremented or decremented as a result of push or pop operations respectively.

Application of Stack: Stack provides a powerful data structure which has applications in many
situations. The main advantage of the stack is that,

We can store data (PUSH) in it with out destroying previously stored data. This is not true in the
case of other registers and memory locations.

stack operations are also very fast

The stack may also be used for storing local variables of subroutine and for the transfer of
parameter addresses to a subroutine. This facilitates the implementation of re-entrant
subroutines which is a very important software property.

The disadvantage is, as the stack has no fixed address, it is difficult to debug and document a
program that uses stack.

Stack operation: Operations on stack are performed using the two instructions namely PUSH
and POP. The contents of the stack are moved to certain memory locations after PUSH
instruction. Similarly, the contents of the memory are transferred back to registers by POP
instruction.

For example let us consider a Stack whose stack top is 4506 H. This is stored in the 16-
bit Stack pointer register as shown in Fig.29

Before PUSH operation

4503
4504
4505
sp
4506 1A «— (stack top location)
4507 07

stack

Scanned with CamScanner

Figure.29 The PUSH operation of the Stack

Let us consider two registers (register pair) B & C whose contents are 25 & 62.

Reg.B Reg. C

After PUSH operation the status of the Stack is as shown in Fig 3.30
25 62
| After PUSH operation
: B
i C
[25 62
|

—4 nhext Available location

4503 sp
4504 62 — | 4504
4505 25
4506 1A
4507 07

Figure .30 After PUSH operation the status of the stack

Let us now consider POP operation: The Figs 31 & 32 explains before and after the POP
operation in detail

Scanned with CamScanner

35 65
SP

4502 15 -—

4503 ic

4504 2a

4505 1A

4506 09

4507 07

Stack

Figure 31 The POP operation of the Stack

Scanned with CamScanner

POPB

| After POP operation
|
| i 2
I 1C 15
I
SP
4504 24 <« |4504
4505 1A
4506 09
4507 07

Stack after POP operation

Figure 32 After POP operation the status of the stack

Before the operation the data 15 and 1C are in the locations 4502 & 4503 and after the pop
operation the data is copied to B-C pair and now the SP register points to 4504 location. This is
shown in Fig.3.32

Programming Example FOR PUSH & POP

Write a program to initialize the stack pointer (SP) and store the contents of the register pair H-
L on stack by using PUSH instruction. Use the contents of the register pair for delay counter
and at the end of the delay retrieve the contents of H-L using POP.

Memory Label Mnemonics | Operand Comments

Location

8000 LXI SP, 4506 H Initialize
Stack
pointer

8003 LXI H,2565 H

8006 PUSH H

8007

DELAY CALL Push the

Scanned with CamScanner

8.00A

POP

contents.

Scanned with CamScanner

Subroutine: It is a set of instructions written separately from the main program to execute a
function that occurs repeatedly in the main program.

For example, let us assume that a delay is needed three times in a program. Writing delay
programs for three times in a main program is nothing but repetition. So, we can write a
subroutine program called ‘delay’ and can be called any number of times we need

Similarly, in 8085 microprocessor we do not find the instructions for multiplication and
division. For this purpose we write separate programs. So, in any main program if these
operations are needed more than once, the entire program will become lengthy and complex.
So, we write subroutine programs MUL & DIV separately from main program and use the
instruction CALL MUL (or) CALL DIV in the main program. This can be done any number of
times. At the end of every subroutine program there must be an instruction called ‘RET’. This
will take the control back to main program.

The 8085 microprocessor has two instructions to implement the subroutines. They are CALL
and RET. The CALL instruction is used in the main program to call a subroutine and RET
instruction is used at the end of the subroutine to return to the main program. When a
subroutine is called, the contents of the program counter, which is the address of the
instruction following the CALL instruction is stored on the stack and the program execution is
transferred to the subroutine address. When the RET instruction is executed at the end of the
subroutine, the memory address stored on the stack is retrieved and the sequence of execution
is resumed in the main program.

Diagrammatic representation

Let us assume that the execution of the main program started at 8000 H. It continues until a
CALL subroutine instruction at 8020 H is encountered. Then the program execution transfers to
8070 H. At the end of the subroutine 807B H. The RET instruction is present. After executing
this RET, it comes back to main program at 8021 H as shown in the following Fig. 33

8000H (Start)

main program

WV CALL Subroutine
8020H — 8070H

Return

Subroutine program

N 8050 H \V/ (RET)
End of main program 807B H

Scanned with CamScanner

