DAS: Decimal Adjust After Subtraction: This instruction converts the results of subtraction of two packed BCD
numbers to a valid BCD number. The subtraction has to be in AL only. If the lower nibble of AL is greater than 9, this
instruction will subtract 06 from lower nibble of AL. If the result of subtractions sets the carry flag or if upper nibble is
greater than 9, it subtracts GOH from AL. This instruction modifier the AF, CF, PF and ZF flags. The OF is undefined after
DAS instruction.

The examples are as follows:

Ex: i AlL=75 BH=46
SUB AL,BH R AL€2F=(AL)-(BH)
; AF=1
DAS 3 AL€29 (as F>9,F-6=9)
ii. AL=38 CH=61
SUB AL, CH : AL< D7 CF=1(borrow)
DAS ; AL€77(as D>9, D-6=7)
R CF=1(borrow)

NEG: Negate: The negate instruction forms 2's complement of the specified destination in the instruction. For
obtaining 2's complement, it subtracts the contents of destination from zero. The result is stored back in the
destination operand which may be a register or a memory location. If OF is set, it indicates that the operation could
not be completed successfully. This instruction affects all the condition code flags.

CBW: Convert signed Byte to Word: This instruction converts a signed byte to a signed word. In other words, it copies
the sign bit of a byte to be converted to all the bits in the higher byte of the result word. The byte to be converted
must be in AL. The result will be in AX. It does not affect any flag.

CWD: Convert Signed Word to double Word: This instruction copies the sign bit of AX to all the bits of DX register. This
operation is to be done before signed division. It does not affect any other flag.

3. Logical Instructions:

| AND | or NOT | XOR | TEST |

These byte of instructions are used for carrying out the bit by bit shift, rotate or basic logical operations. All the
conditional code flags are affected depending upon the result. Basic logical operations available with 8086 instruction
set an AND, OR, NOT and XOR.

AND: Logical AND: This instruction bit by bit ANDs the source operand that may be an immediate, a register, or a
memaory location to the destination operand that may be a register or a memory location. The result is stored in the
destination operand. At least one of the operand should be a register or a memory operand. Both the operands cannot
be memory locations or immediate operand.

The examples of this instruction are as follows:

Syntax: i. AND mem/regl, mem/reg2
[mem/regl] € [mem/regl]a[mem/reg2]
Ex: AND BL, CH

ii. AND mem,data

[mem]<[mem] A data
Ex: AND start,05H

iii. AND reg,data
[reg]€[reg] A data

Scanned with CamScanner

Ex: AND AL, FOH

iv. AND A,data
[A]€[A] A data
A:ALJAX

Ex: AND AX,1021H

OR: Logical OR: The OR instruction carries out the OR operation in the same way as described in case of the AND
operation. The limitations on source and destination operands are also the same as in case of AND operation.

Syntax: i. OR mem/regl, mem/reg2
[mem/regl] € [mem/regl] v [mem/reg2]
Ex: ORBL, CH

ii. OR mem,data
[mem<¢[mem)] v data
Ex: OR start, 05H

iii. OR Start,05H
[reg)<[reg] v data
Ex: OR AL, FOH

iv. OR A, data
[A]€[A] v data

Ex: ORAL, 1021H
A: AL/AX.

NOT: Logical Invert: The NOT instruction complements (invents) the contents of an operand register or a memory
location bit by bit.

Syntax: i. NOT reg
[reg] <[reg]’
Ex: NOT AX

il NOT mem
[mem] € [mem)]'
Ex: NOT[SI]

XOR: Logical Exclusive OR: The XOR operation is again carried out in a similar way to the AND and OR operation. The
constraints on high output, when the 2 input bits are dissimilar. Otherwise, the output is zero.

Syntax: i XOR mem/regl, mem/reg2
[mem/regl] € [mem/regl] © [mem/reg2]
Ex: XORBL, CH

ii. XOR mem,data

[mem] € [mem] @ data
Ex: XOR start, OSH

iii. XOR reg, data

[regl€ [reg] & data
Ex: XORAL FOH

iv. XOR A, data
[A]€ [A] & data

Scanned with CamScanner

A: AL/AX
Ex: XOR AX, 1021H

CMP: Compare: This instruction compares the source operand, which may be a register or an immediate data or a
memory location, with a destination operand that may be a register or a memory location. For comparison, it
subtracts the source operand from the destination operand but does not store the result anywhere. The flags are
affected depending on the result of subtraction. If bath the operands are equal, zero flag is set. If the source operand
is greater than the destination operand, carry flag is set or else, carry flag is reset.

Syntax: i CMP mem/regl, mem/reg2
[mem/regl] — [mem/reg2]
Ex: CMP CX, BX

iii. CMP mem/reg, data
[mem/reg] — data
Ex: CMP CH, 03H

fii. CMP A, data
[A]- data
A: AL/AX

Ex: CMP AX, 1301H

TEST: Logical Compare Instruction: The TEST instruction performs a bit by bit logical AND operation on the two
operands. Each bit of the result is then set to 1, if the corresponding bits of both operands arel, else the result bit is
rest to 0. The result of this and operation is not available for further use, but flags are affected. The affected flags are
OF, CF, ZF and PF. The operands may be register, memory or immediate data.

Syntax: i TEST mem/regl, mem/reg2
[mem/regl] A [mem/reg2]
Ex: Test CX,BX
ii. TEST mem/reg, data
[mem/reg] A data
Ex: TEST CH, 03H

iii. TEST A, data
[A] A data
A: AL/AX

Ex: TEST AX, 1301H

4.Shift Instructions:

| SHL/SAL [SHR | SAR |

SHL/SAL: Shift Logical/ Arithmetic Left: These instructions shift the operand word or byte bit by bit to the left and
insert zeros in the newly introduced least significant bits. In case of all the SHIFT and ROTATE instructions, the count is
either 1 or specified by register CL. The operand may reside in a register or memory location but cannot be immediate
data. All flags are affected depending on the result.

Ex:

BIT POSITIONS:CF15 14 13 12 11 10 9 8 7 6 5 43 2 1 0

OPERAND: 1 01 01 10010100101

SHL 1 01 01 1 00101001010
RESULT1™

SHL 01011 001010010100
RESULT 2™

Scanned with CamScanner

Syntax: i SAL mem/reg,1
Shift arithmetic left once

7 0
CF | —— <«

g k_/

ii. SAL mem/reg, CL

Shift arithmetic left a byte or word by shift count in CL register.

iii. SHL mem/reg,1
Shift Logical Left
Ex: SHL BL, 01H

iv. SHL mem/reg, CL
Shift Logical Left once a byte or word in mem/reg.

SHR: Shift Logical Right: This instruction performs bit-wise right shifts on the operand word or byte that may reside in
a register or a memory location, by the specified count in the instruction and inserts zeros in the shifted positions. The
result is stored in the destination operand. This instruction shifts the operand through carry flag.

Ex:
BITPOSITIONS:15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CF
OPERAND :1 0 1 0 1 1 0010100101
Count=1 01 01 0 1 10010100101
Count=2 00 1 01 0 11001010010

SAR: Shift Arithmetic Right: This instruction performs right shifts on the operand word or byte, that may be a register
or a memaory location by the specified count in the instruction and inserts the most significant bit of the operand the
newly inserted positions. The result is stored in the destination operand. All the condition code flags are affected. This
shift operation shifts the operand through carry flag.

Ex:

BIT POSITIONS:15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 OCF
OPERAND: 1 01 01 10010100101
Count=1 110 10 110010100101

inserted MSB=1

Count=2 11 1010 11001010010

inserted MSB=1
Immediate operand is not allowed in any of the shift instructions.

Syntax: i. SAR mem/reg,1
iii. SAR mem/reg, CL

Scanned with CamScanner

