As aresult, an LTI diserete-time system is cawsal if and only if its impulse respanse sequence {h[n]} is a
causal sequence satisfying the condition of Eq. (2.80) .

It follows from Example 2.21 that the discrete-time system of Eq. (2.14) is a causal system since
its rmpulse responsc satisties the causality condition of Eg. (2.80). Likewise, from Example 2.22 we
observe that the discrete-time accumulator of Eq. (2.54) is also a causal system. On the other hand, from
Examplc 2.23 it can be seen that the factor-of-2 linear inte-polator defined by Eq. (2.58) is a noncausal
system because its impulse response does not satisfy the causality condition of Eq. (2.80). However, a
noncausal diserete-time system with a tinite-length impulse response can often be realized as a causal
system by inserting a delay of an appropriate amount. For example. a causal version of the discrete-time
factor-of-2 lincar interpolator is obtained by delaying the output by one sample period with an input-output
relation given by

$ln] = xaln — 11+ 2 (ol = 2] + xylnl).

2.6 Finite-Dimensional LTI Discrete-Time Systems

An important subclass of LTI discrete-time systems is characterized by a linear constant coefficient differ-
cnce equation of the form

N A
Y divln—kl=)_ puxin — k], (2.81)
k=0 k=0

where x[n]and y|n] are, respectively, the input and the outputof the system, and [d; } and [ px) are constants.
The order of the discrete-lime system is given by max(N, M). which is the order of the difference equation
characterizing the system. It is possible 10 implement an LTI system characterized by Eq. (2.81) since
the computation here involves two finite sum of products even though such a system, in general, has an
impulse response of infinite length.

The output y(n] can then be computed recursively from Eq. (2.81). If we assume the system to be
causal. then we can rewrile Eq. (2.81) to express y[r] exphcitly as a function of x{[n]:

N M
d
vinl ==Y Fytn k143 Pxpn—n, (2.82)
dy oo do

provided dy 7 0. The output y[n] can be computed for all n > n, knowing x[n] and the initial conditions
¥, — 1] ¥ln, =2].. ., _"I”n - N]

2.6.1 Total Solution Calculation

The procedure for computing the solution of the constant coefficient difference equation of Eq. (2.81) is
very similar to that employed in solving the constant coefficient differential equation in the case of an LTI
continuous-time system. In the case of the discrete-time system of Eq. (2.81) the output response y[n) also
consists of two components which are computed independently and then added 1o yteld the total solution:

ylnl = ye[nl + ypln). (2.83)
In the above equation the component v,.[n] is the solution of Eq. (2.81) with the input x[n] = 0; i.e.. il is

the solution of the homogeneous difference equation:

h?
de vln — k] = 0. (2.84)
k=0
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and the component y,[n] is a solution of Eq. (2.81) with x[n] £ 0. y:[n] is called the complemeniary
solution, while y,[n] is called the particular solution resulting from the specified input x[n], often called
the forcing function. The sum of the complementary and the particular solutions as given by Eq. (2.83} is

called the total solution.
We first describe the method of computing the complementary solution y.{n). To this end we assume

that it is of the form
Yeln] = A". (2.85)

Substituting the above in Eq. (2.84) we amrive at

N N
Y diyln —kl=7 dr"
k=0 k=0
= A" N(doAN +d AN -+ dy_1A+dy)=0. (2.86)

The polynomial " , diAN=* is called the characteristic polynomial of the discrete-time system of
Eq. (2.81). Let A}, A2,.... Ay denote its N roots, If these roots are all distinct, then the general form of
the complementary solution is given by

yeln]l = aA] + @2A3 + - -+ +andly, (2.87)

where oy. @3, ....axn are constants determined from the specified initial conditions of the discrete-time
system. The complementary solution takes a different form in the case of multiple roots. For example,
if A| is of multiplicity L and the remaining N — L roots. A2, A3,..., AN—y, are distinct, then Eq. (2.87)
takes the form

veln] = A% + aand} + a3n?Af + -+ oent I Fap Al - Favdy (2.88)

Next, we consider the determination of the particular solution y,(a] of the difference equation of
Eq. (2.81). Here the procedure is to assume that the particular solution is also of the same form as the
specified input x[n] if x[n] hasthe formAj(Ao # A i = 1, 2,.... N) for alln . Thus, if x[n] is a constant,
then yp[n] is also assumed to be constant. Likewise, if x[n] is a sinusoidal sequence, then y,[n] is also
assumed 0 be a sinusoidal sequence, and 50 on.

We illustrate below the determination of the total solution by means of an example.

EXAMPLE 230 Lot us determine the ttal sofation for n = 0 of & docmie-time systrm charasarerized by the
fullowing Aiffersnce egurtion
yinl4 yim = 1) = tpln = 71= x]n), ars)

for o step bnpait elml = Yaulne) and with initial comclitions o[ —1] = | 2z (2] = -1,
We Bt determing the form of the complementary solution Setring s[nf = 0 and yin] = A" in Fay (Z59) wy
urrive! Al

)I'l i L'-! - f.’..-z o JH‘I‘I: 'f'i - )
w " A+ DO - =0

el hemes the roots of the chameterivie polynomial A¥ 4 L —Gare Ay = <), 0y =2 Therefury the complomentary
salstian 1 of the fonn
feln} o (=3 e, 12.90)
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For the partiveles salutinon we sxiumne
splnj=2

Submtputing the ghveve in B 2.0Y) we pnt
f+f—06f —-Hlft"lh

winch foen = O yiclds 8o« 2.
The vean! salutzon s theredory «f the farmy

yinl = aypt =" e 2@y - L n >0 (291}

The conatants wr; amd e iure Choeen 1o satsdy the specilied inidial conditions. From Egs. (2.89) nnd (2.91) we gt

-3 .,
=M =a2)(=)"" sy " =2= -},
’

etl=at=0"" s a2 =2 =
Solveyp these 1w sgizstinne we attive 31
aj=-JM o3 = 48,
Thus the tutal stdushen ks ghven by
siml= =1 8= H" s 482" -2 nxl

If the input excitation is of the same form as one of the terms in the complementary solution, then it is
necessary to modify the form of the particular solution as illustrated in the following example.

ENAMPLEZMN We corenmine the total salunm foe x 2= O of fe differeece equation of B, (2.89] for 2n jopist
aln) = (25" o [r ] with the name ol Conddstzons ar in the jrevion ssample _

Ax badrzared b e grpvbous evnngde, the complemestiary wstotion costan a tent oy (297 which is of the same
toren e the spoctied g, Hence w2 need 10 wlect a forin for e parmicniar soluton whach i dotines and doex
Il Cretatm Aty tezarm dhemilar 1o theee commtainn! e the Comdlumentiny solutian We o

yplnl = dai)
Submpiiuting the abvree i B (2 390 we pot
Ani2® - fin—- U S & - 12)° 7 = 12 uln),
Fare > () we obtain From ihe shane edautiom 0= 0 4 The dotul solutien iy rw of the form
dul =t =1 o2+ 02a)Y, = >0 AL

T dessraninn s values ol ey amd oy, we mshe wee of the specibed tuual conbinona. From Bpe (2.5 sod (3.93)
we ambe af

M= = i, T a:h‘l"z 08 -IND " = 1,

= =mi=3 " a2 + QU= =1,
whach whrn solyesd pirddv ey = = 500 oz = <095 Thorefine the 1ot nolutiom 15 grvan &y

i) = =30a=0" = 0V « 0L, w0
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2.6.2 Zero-Input Response and Zero-Siate Response

An alternate approach to determining the total solution y[n) of the difference equation of Eq. (_2.81) is by
computing ils zero-input response y:i [n] and zero-state response ys(n]. The component y?"lnl is ohtmved
by solving Eq. (2.81) by setting the input x{n] = 0, and the component y.s[n] is obtained l?y s_olvmg
Eq. (2.81) by applying the specified input with all initial conditions set to zero. The total solution is then

given by y;i[n] + yz:[n].
This approach is illustrated by the following example.

FXAMPLE 2.2 We detnrmme v (otul selunnn of ine ducrote-dime vy of Exsmple 250 by compating

the 2ev0-mpuf reaponss and the scrn-aair 1
The renseinput tosponse v (n ] of Eq (289) s ghen by
comstats oy and e are chosen 10 satinfy the specified minal condinonn, Now

the complementary solation el By 2901 shere the
fiom Bq. (2 89) we pes

pl0)] = =yf=1]4-by|-2)=—1—fh=m =7,

Hil=—=p0)« Gy|=1l=T46= 1

Neat from By (2900 we get
Wil = ) 41,
1) s =3y + Jo7.
Solving these rug setr of ogquatitns we prrtve M) = —3d oy = = I Therefore
safnl=—tA-H" 162", =z0
The 2z atate eespome in dotermines lom Eq. .91 by eyalizsting the conatants ay st oy 10 sathfy the rem
© mitial cenditions. Frum Eq. (2.89) we p=
*10] = x|0] = £,
ril) = afl) - lriﬁl: n
Bent, from Eq (2.91) und the sbwve set of equatoms we armive sl o) = 16,03 =064 Thus the s2ro-suir revpoees
for m = 0 with inissl posditions 3 | =2] = s;0=1] = 0 b preen by
vag[n] = 36(—3)" 4 64" -1

Hence. the towad ssdution vis | is given by thee sum v (o] 4+ vy [n ) ezsulting in

o) =L - 8" -2, ne L

wlisch iz idemuicn] uy thal derrved in Example 230 o e periicd

2.6.3 iImpulse Response Calculation

The impulse response i[n] of a causal LTI discrete-time system is the output observed with input x[n]} =
5[nl. Thus, it is simply the zero-state response with x[n] = &[n]. Now for such an input, x[n] = 0
for n > 0, and thus, the particular solution is zero, i.e., vpln] = 0. Hence the impulse response can be
computed from the complementary solution of Eq. (2.87) in the case of simple roots of the characteristic
equation by determining the constants a; to satisfy the zero initial conditions. A similar procedure can
be followed in the case of multiple roots of the characieristic equation. A system with all zero initial

conditions is often called a relaxed system.
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EXAMPLE 238 o this cxample we dosetrminge e pules resguanse o of the caumal discrete-time syszm of
Esangple 230 Friae Eg (2.90) we g

Malw= oy (31" 5a3i7)"., n=a0
From the sbose, we grriee ut
'lul ey 'l'l o-u:,!
AMij= -3 4 ity
Nest trom B, :89) with afa)] = Fja] we !
MO = 1.
AT 4 RID) =0

Solution of the shove twe sety of eqlatioms yirkds ) w06, 0y = 04
Thue, the impulse respoass o given by

Aln)=0.6(-" 404", w=0

It follows from the form of the complementary solution given by Eq. (2.88) that the impulse responsc
of a finite-dimensional LTI system characterized by a difference equation of the form of Eq. (2.81) is of
infinite length. However, as illustrated by the following example, there exist infinite impulse response LTI
discrete-time systems that cannot be characterized by the difference equation form of Eq. (2.81).

EXAMPLE 203 The syaem desined bry Wt rropatiee peegumne

!
Az - ;jﬂlﬁ - 1]

daes 5ot have 2 nopresentaiom i (he Horn of 2 hnesr conmnt cocflicimnt dffermmes equation. It shoght be noted
(hat the abive rysient is Conaid pad sl BIBO ttabile

Since the impulse response h(n] of a causal discrete-time system is a causal sequence, Eq. (2.82) can
also be used to calculate recursively the impulse response for n > 0 by setting initial conditions to 2ero
values, i.e., by setting y[—1] = y[-2] = -.. = ¥[—N1 = 0, and using a unit sample sequence &[n] as

2.6.4 Output Computation Using MATLAB

The causal LTI system of the form of Eq. (2.82) can be simulated in MATLAB using the function filter
already made use of in Program 2 4. In one of its forms, the function

y = filter(p,d,x)

processes the input data vector x using the system characterized by the coefficient vectors p and 4 to
generate the output vector y assuming zero initial conditions. The length of y is the same as the length of
x. Since the function implements Eq. (2.82), the coefficient dy must be nonzero.

The following example illustrates the computation of the impulse and step responses of an LTI system
described by Eq. (2.82),
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