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x(n)
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Figure 2.1 Graphical representation of a discrete-time signal.

two successive samples. Also, it is incorrect to think that x(n} is equal to zero if n
is not an integer. Simply, the signal x(n) is not defined for noninteger values of n.

In the sequel we will assume that a discrete-time signal 1s defined for every
integer vaiue n for —oc < n < oc. By tradition, we refer to x(n) as the “nth sample”
of the signal even if the signal x(n) is inherently discrete time (i.e., not obtained
by sampling an analog signal). If, indeed, x(n) was obtained from sampling an
analog signal x,(¢), then x(n) = x,(nT), where T is the sampling period (i.e., the
time between successive samples).

Besides the graphical representation of a discrete-time signal or sequence as
illustrated in Fig. 2.1. there are some alternative representations that are often
more convenient to use. These are:

1. Functional representation, such as
1, forn=13
x{n) = l4. forn=2 (2.1.1)
0. elsewhere

2. Tabular representation, such as
-2 -1 01 2 3
0 00 1 41

n

4 5
x(n) 00

3. Sequence representation

An infinite-duration signal or sequence with the time origin (n = 0) indicated
by the symbol 1 is represented as

x(n)=1{...0.0.1.4,1.0,0,...} (2.1.2)
1
A sequence x(n), which is zero for n < 0, can be represented as
x(n)=1{0,1,4.1.0.0....) (2.1.3)
t

The time origin for a sequence x(n), which is zero for n < 0, is understood to be
the first (leftmost) point in the sequence.



Sec. 2.1 Discrete-Time Signals 45

A finite-duration sequence can be represented as
xinr=1{3. ~-1.-2.5.0.4. -1} (214

-~

whereas a finite-duration sequence that satisfies the condition x(n) = 0 forn < 0
can be represented as
x(n)=10.1.4.1) (2.1.5)
T

The signal in (2.1.4) consists of seven samples or points (in time). so it is called or
identified as a seven-point sequence. Similarly. the sequence given by (2.1.5) is a
four-point sequence.

2.1.1 Some Elementary Discrete-Time Signals

In our study of discrete-time signats and systems there are a number of basic signals
that appear often and play an important role. These signals are defined below.

1. The unit sample sequence is denoted as §(n) and is defined as

. forn=20

S
0. forn#0 (2.1.6)

Sn) =
In words, the unit sample sequence Is a signal that is zero everywhere, except
at n = 0 where its value is unity. This signal is sometimes referred to as a
unit impulse. In contrast to the analog signal §(r). which is also called a
unit impulse and is defined to be zero evervwhere except 1 = 0. and has unit
area. the unit sample sequence is much less mathematically complicated. The
graphical representation of §(n) 1s shown in Fig. 2.2.

2. The unit step signal is denoted as u(n) and is defined as

.l forn>=0 n g
uln):[(J‘ forn < 0 (2.1.7)
Figure 2.3 illustrates the unit step signal.
3. The unir ramp signal is denoted as «,(n} and is defined as
_Jn forn>=0 "
Urlm) = {[). forn <0 (2.1.8)

This signal is illustrated in Fig. 2.4.

&(n)

1

Figure 2.2 Graphical representation of

2-10 1 234 ... n  the unit sample signal.
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Figure 2.3 Graphical representation of
n  the unit step signal.

<
[§)

T I ‘ Figure 2.4 Graphical representation of
n the unit ramp signal.

4. The exponential signal is a sequence of the form
x(n) =aqg" for all n (2.1.9)

If the parameter a is real. then x(n) is a real signal. Figure 2.5 illustrates x(n)
for various values of the parameter a.

When the parameter a is complex valued, it can be expressed as
a = reja
where r and 8 are now the parameters. Hence we can express x(n) as

x{n) = rel®n
= r"(cosfn + jsin6n)

”“ 0<a<1 a>| xla) [” ,
n n

(2.1.10y

Figure 2.5 Graphical representation of exponential signals.
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Since x(n) is now complex valued. it can be represented graphically by plotting
the real part
xpin) =r"cosén (2.1.11)

as a function of n. and separately plotting the imaginary part
xp{n) = r'"sinén (2.1.12)

as a function of n. Figure 2.6 illustrates the graphs of xz(n) and x;(n} for r = 0.9
and 6 = n/10. We observe that the signals xg(n) and x;(n) are a damped (decaying
exponential) cosine function and a damped sine function. The angle variable 6
is simply the frequency of the sinusoid. previously denoted by the (normalized)
frequency variable w. Clearly, if r = 1. the damping disappears and xg{n). x;{n).
and x(n) have a fixed amplitude. which is unity.

Alternativelv. the signal x(n) given by (2.1.10) can be represented graphically
by the amplitude function

lx{n)| = Atn) =r" (2.1.13)

and the phase function
_x(n)=¢n) =6n (2.1.14

Figure 2.7 illustrates Atn) and ¢(n) for r = 0.9 and ¢ = = /10. We observe that
the phase function is linear with n. However. the phase is defined only over the
interval —m < & < & or. equivalently. over the interval 0 < 8 < 27. Consequently.
by convention ¢{(n) is piotted over the finite interval -7 < 6 <7 or 0 < 6 < 2.
In other words, we subtract multiplies of 2n from ¢ (1) before plotting. In one
case. ¢(n) is constrained 1o the range —7 < @ < m and in the other case ¢(n) is
constrained to the range (0 < # < 2. The subtraction of muitiples of 2rx from ¢(n)
is equivalent to interpreting the function ¢(n) as ¢(n). modulo 2z. The graph for
¢(n). modulo 2x. is shown in Fig. 2.7b.

2.1.2 Classification of Discrete-Time Signals

The mathematical methods emploved in the analysis of discrete-time signals and
systems depend on the characteristics of the signals. In this section we classify
discrete-time signals according to a number of different characteristics.

Energy signals and power signals. The energy E of a signal x(n) is
defined as

E= }_*__; lx(n)]? (2.1.15)

We have used the magnitude-squared values of x(n), so that our definition applies
to complex-valued signals as well as real-valued signals. The energy of a signal can
be finite or infinite. If E is finite (i.e.,, 0 < E < o0), then x(n) is called an energy
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Figure 2.7 Graph of amplitude and phase function of a complex-valued exponen-
tial signal: (a) graph of Atny = r". 4 = 0.9: (b) graph of ¢ = (x/10mn. moduio
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signal. Sometimes we add a subscript x to £ and write £, to emphasize that £, 1s
the energy of the signal x(s).

Many signals that possess infinite energy. have a finite average power. The
average power of a discrete-time signal x(n) is defined as

P = lim Z x(m)? (2.1.16)

. 7
N—x 2N + n——A

If we define the signal energy of x(n) over the finite interval —N <n < N as

”
Ex= Y Ixtn) (2.1.17)
n=—N
then we can express the signal energy E as
Es= llm En (2.1.18)
and the average power of the signal x(n) as
1
P = lim ——Ex (2.1.19)

Nox 2N +1
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Clearly, if E is finite. P = 0. On the other hand. if E is infinite. the average
power P may be either finite or infinite. If P is finite (and nonzero), the signal is
called a power signal. The following example illustrates such a signal.

Example 2.1.1

Determine the power and energy of the unit step sequence. The average power of
the unit step signal is

1 &,
P =l E -
A'Ln:c 2N +1 ’I:O“ b}

i ML LHUN 1
Nox 2N 41 N 24 1/N 2

Consequently. the unit step sequence is a power signal. Its energy is infinite.

Similarly, it can be shown that the complex exponential sequence x(n) =
Ae’™" has average power A’, 5o it is a power signal. On the other hand, the unit
ramp sequence is neither a power signal nor an energy signal.

Periodic signals and aperiodic signals. As defined on Section 1.3, a
signal x(n) is periodic with period N(N > 0) if and only if
x(n+ N)=x(n) for all n (2.1.20)

The smallest value of N for which (2.1.20) holds is called the (fundamental) period.
If there is no value of N that satisfies (2.1.20), the signal is called nonperiodic or

aperiodic.
We have already observed that the sinusoidal signal of the form
x(n) = Asin2x fon (2.1.21)
is periodic when f is a rational number, that is, if f; can be expressed as
k
== (2.1.22
fo ~ )

where k and N are integers.

The energy of a periodic signal x(n) over a single period, say. over the interval
0 < n < N-—1.is finite if x(n) takes on finite values over the period. However, the
energy of the periodic signal for —oc < n < oo is infinite. On the other hand, the
average power of the periodic signal is finite and it is equal to the average power
over a single period. Thus if x(n) is a periodic signal with fundamental period N
and takes on finite values, its power is given by

N-1
P= % 2 fx(n)|? (2.1.23)

Consequently, periodic signals are power signals,
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Symmetric (even) and antisymmetric (odd) signals. A real-valued sig-
nal x(n) is called symmetric (even) if

xX(—n) = x(n) (2.1.24)
On the other hand. a signal x (n) is called antisvmmetric (odd) if
x{—n) = —xn) (2.1.2%

We note that if x(n) is odd, then x(0) = 0. Examples of signals with even and odd
symmetry are illustrated in Fig. 2.8.

We wish to illustrate that any arbitrary signal can be expressed as the sum of
two signal components. one of which is even and the other odd. The even signal
component is formed by adding x (1) to x(—n) and dividing by 2. that is,

xn) = Hxin) + x(=m)] (2.1.26)

x(m

x(nj

w e

(53

(b)

Figure 2.8 Example of even (a) and odd (b) signals.
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Clearly, x.(n) satisfies the symmetry condition (2.1.24). Similarly, we form an odd
signal component x,(n) according to the relation

xo(n) = 3[x(n) — x(—n)] (2.127)

Again, it is clear that x,(n) satisfies (2.1.25); hence it is indeed odd. Now, if we
add the two signal components, defined by (2.1.26) and (2.1.27), we obtain x(n),
that is,

x(n) = x.(n) + x,(n) (2.1.28)

Thus any arbitrary signal can be expressed as in (2.1.28).
2.1.3 Simple Manipuiations of Discrete-Time Signals

In this section we consider some simple modifications or manipulations involving
the independent variable and the signal amplitude (dependent variable).

Transformation of the independent variable (time). A signal x(n) may
be shifted in time by replacing the independent variable n by n — k. where & is an
integer. If k is a positive integer, the time shift results in a delay of the signal by
k units of time. If k is a negative integer, the time shift results in an advance of
the signal by || units in time.

Example 2.1.2

A signal x(n) is graphically illustrated in Fig. 2.9a. Show a graphical representation
of the signals x(n ~ 3) and x(n + 2).

Solution The signal x(n —3) is obtained by delaying x(n) by three units in time. The
result is illustrated in Fig. 2.9b. On the other hand, the signal x(n + 2) is obtained by
advancing x(n) by two units in time. The result is illustrated in Fig. 2.9c. Note that
delay corresponds to shifting a signal to the right, whereas advance implies shifting
the signal to the left on the time axis.

If the signal x(n) is stored on magnetic tape or on a disk or, perhaps, in the
memory of a computer, it is a relatively simple operation to modify the base by
introducing a delay or an advance. On the other hand, if the signal is not stored but
is being generated by some physical phenomenon in real time, it is not possible
to advance the signal in time, since such an operation involves signal samples
that have not yet been generated. Whereas it is always possible to insert a delay
into signal samples that have already been generated, it is physically impossible
to view the future signal samples. Consequently, in real-time signal processing
applications, the operation of advancing the time base of the signal is physically
unrealizable.

Another useful modification of the time base is to replace the independent
variable n by —n. The result of this operation is a folding or a reflection of the
signal about the time origin n = 0.
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Example 2.1.3

Show the graphical representation of the signal x(—n) and x(—n + 2). where x(n}) is
the signal illustrated in Fig. 2.10a.

Solution The new signal y(n) = x(—n) i1s shown in Fig. 2.10b. Note that y(0) = x(0).
v{l) = x(=1). ¥(2) = x(=2). and 50 on. Also. ¥(—1) = x(1). y(—2) = x(2), and so on.
Therefore. v(m) is simply x(n) reflected or folded about the time origin n = 0. The
signal v(n} = x(—n + 2) is simplv x(—n) delaved by two units in time. The resulting
signal 1s illustrated in Fig. 2.10c. A simple way to verify that the result in Fig. 2.10¢
is correct is to compute samples, such as v(0) = x(2), ¥(1) = x(1}, »(2) = x(0).
¥(—1) = x(3). and so on.

It is important to note that the operations of folding and time delaying (or
advancing) a signal are not commutative. If we denote the time-delay operation
by TD and the folding operation by FD. we can write

TDi{x(n)] = x(n —k) k>0

(2.1.29)
FD[x(n)] = x(—n)

Now
TD(FD[x(n)]} = TDi[x{(—n)] = x(—n + k) (2.1.30$)
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Figure 2.10 Graphical illustration of
(c} the folding and shifting operations.

whereas
FD{TD;[x(n)]} = FD[x(n — k)] = x(—n — k) (2.1.31)

Note that becausé the signs of #» and k in x{(n—k) and x(—n+k) are different, the re-
sult is a shift of the signals x(rn) and x(—n) to the right by k samples, corresponding
to a time delay.

A third modification of the independent variable involves replacing n by un,
where 4 is an integer. We refer to this time-base modification as time scaling or
down-sampling.

Example 2.1.4

Show the graphical representation of the signal ¥(n) = x(2n), where x(n) is the signal
illustrated in Fig. 2.11a.

Solution We note that the signal y(n) is obtained from x(n) by taking every other
sample from x(n), starting with x(0). Thus y(0) = x(0), y(i} = x(2), ¥(2) = x(4), ...
and y(-1) = x(~2), ¥(-2) = x(—4), and so on. In other words, we have skipped
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Figure 2,11 Graphical illustration of down-sampling operation.

the odd-numbered samples in x(n) and retained the even-numbered samples. The
resulting signal is iflustrated in Fig. 2.11b.

If the signal x{n) was originally obtained by sampling an analog signal x4{1).
then x(n) = x,(nT). where T is the sampling interval. Now. v(n) = x(2n) =
x,(2Tn). Hence the time-scaling operation described in Example 2.1.4 is equivalent
to changing the sampling rate from 1/7 to 1/27. that is, to decreasing the rate by
a factor of 2. This is a downsampling operation.

Addition, multiplication, and scaling of sequences. Amplitude modifi-
cations include addition, multiplication, and scaling of discrete-time signals.

Amplitude scaling of a signal by a constant A is accomplished by multiplying
the value of every signal sample by A. Consequently. we obtain

v{n) = Axtn) —oxx < n <X

) The sum of two signals x;j(rn) and xz2(n) is a signal y(n), whose value at any
instant is equal to the sum of the values of these two signals at that instant. that is.

y(n) = x1(n) + xa(n) —C <N <X
The product of two signals is similarly defined on a sample-to-sample basis as

y(n) = xj{n)xa(n) —oo<n <o
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2.2 DISCRETE-TIME SYSTEMS

In many applications of digital signal processing we wish to design a device or
an algorithm that performs some prescribed operation on a discrete-time signal,
Such a device or algorithm is called a discrete-time system. More specifically, a
discrete-time system is a device or algorithm that operates on a discrete-time signal,
called the input or excitation, according to some well-defined rule, to produce an-
other discrete-time signal called the output or response of the system. In general,
we view a system as an operation or a set of operations performed on the input
signal x(n) to produce the output signal v(n). We say that the input signal x(n) is
transformed by the system into a signal y(n), and express the general relationship
between x(n) and v(n) as

v(n) = T[x(n)] (2.2.1)

where the symbol 7 denotes the transformation (aiso called an operator), or pro-
cessing performed by the system on x(n) to produce y(n). The mathematical
relationship in (2.2.1) is depicted graphically in Fig. 2.12.

There are various ways to describe the characteristics of the system and the
operation it performs on x(n) to produce ¥(n). In this chapter we shall be con-
cerned with the time-domain characterization of systems. We shall begin with
an input-output description of the system. The input-output description focuses
on the behavior at the terminals of the system and ignores the detailed internal
construction or realization of the system. Later. in Section 7.5, we introduce the
state-space description of a system. In this description we develop mathemati-
cal equations that not only describe the input-output behavior of the system but
specify its internal behavior and structure.

2.2.1 Input—Output Description of Systems

The input-output description of a discrete-time system consists of a mathematical
expression or a rule, which explicitly defines the relation between the input and
output signals (inpui—output relationship). The exact internal structure of the sys-
tem is either unknown or ignored. Thus the only way to interact with the system is
by using its input and output terminals (i.e., the system is assumed to be a “black
box” to the user). To reflect this philosophy, we use the graphical representa-

Ll e

. x(m) Discrete-time ¥(n)
. System .
input signal Output signal
or excitation or response

Figure 212 Block diagram representation of a discrete-time system.
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tion depicted in Fig. 2.12, and the general input-output relationship in (2.2.1) or,
alternatively, the notation
x(n) > y(n) 22.2)

which simply means that v(n) is the response of the system T to the excitation
x(n). The following examples illustrate several different systems.

Example 2.2.1

Determine the response of the following sytems to the input signal

I{n)={|m, —3<n<3
0, otherwise

(a) v(n) = x(n)
(b) yin)=x(n—-1)
() y(n)=x(n+1)
(d) yn)= _%[xl’n + 1)+ x(n)y + x(n—1)]
(€) v(n)=max{x(n+ 1), x(r). x(n — 1)}
M yn) =34 xtk)=xim+xin—1 +x(n =2+ (22.3)

Solution First. we determine explicitly the sample values of the input signal
x(n)=1{...0.3.2.1.0.1.2.3.0... )

Next. we determine the output of each system using its input~output relationship.

(a) In this case the output is exactly the same as the input signal. Such a system is
known as the identity system.
(b) This system simply delays the input by one sample. Thus its output is given by

x(n)=1{...0.3.2.1,0,1,2.3,0,..}
t

(c) In this case the system “advances” the input one sample into the future. For
example, the value of the output at time n = 0 is ¥(0) = x(1). The response of
this system to the given input is

x(my=1{...0,3.2.1.0.1,.2.3,0... }
t

(d

The output of this system at any time is the mean value of the present, the
immediate past, and the immediate future samples. For example, the output at
time n=01is

¥(0) = Hx(-1) + x(0) + x(D] = j{1 + 0+ 1] = }
Repeating this computation for every value of n, we obtain the output signal

yimy={...01.3.21%12%10,..])
1
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(e) This system selects as its output at time » the maximum value of the three input
samples x(n — 1), x(n). and x(n + 1). Thus the response of this system to the
input signal x(n) is

vin)=140.3.3.3.2.1.2.3.3.3.0... )

(f) This svstem is basicallv an accumulaior that computes the running sum of all
the past input values up to present time. The response of this system 10 the
given input is

v(m)y=4{...0.3.56.6.7.9.12.0... .}
i

We observe that for several of the systems considered in Example 2.2.1 the
output at time » = ny depends not only on the value of the input at n = ng [ie.,
x(ng)). but also on the values of the input applied to the sysiem before and after
n = nq. Consider. for instance, the accumulator in the example. We see that the
output at time n = ny depends not only on the input at time n = ny. but also on
x(n) at times n = ny — 1. ng ~ 2, and so on. By a simple algebraic manipulation
the input-output relation of the accumulator can be written as

n n—1
yn) = A;xx(kl =k;,\ x(k) + x(m) 22.4)

= y(n—1)+x)

which justifies the term accumulator. Indeed. the system computes the current
value of the output by adding (accumulating) the current value of the input to the
previous output value.

There are some interesting conclusions that can be drawn by taking a close
look into this apparently simple system. Suppose that we are given the input signal
x(n) for n > ny. and we wish to determine the output v(n) of this system for n > nq.
Forn=ng.ng+1..... (2.2.4) gives

ving — 1)+ x(ng)

I

ving)
ving+ 1) = y{ng) +xlng + 1)

and so on. Note that we have a problem in computing v(ng). since it depends on
y(ng — 1). However.

ne—1

ving— 1) = Z x (k)
k==
that is. y(rp — 1) “summarizes” the effect on the system from all the inputs which
had been applied to the system before time ng. Thus the response of the svstem
for n > ny to the input x(n) that is applied at time n, is the combined result of this
input and all inputs that had been applied previously to the system. Consequently,
y(n}, n > ng is not uniquely determined by the input x(r) for n > ng.
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The additional information required to determine y(n) for n > ny is the initial
condition y(np — 1). This value summarizes the effect of all previous inputs to the.
system. Thus the initial condition y(no — 1) together with the input sequence x(n)
for n > ng uniquely determine the output sequence y(n) for n > no.

1f the accumulator had no excitation prior to ng, the initial condition is y(ny—
1) = 0. In such a case we say that the system is initially relaxed. Since y(ng—1) =0,
the output sequence y(n) depends only on the input sequence x(n) for n > n.

It is customary to assume that every system is relaxed at n = —oo. In this
case, if an input x(n) is applied at n = —oo, the corresponding output y(n) is solely
and uniguely determined by the given input.

Example 2.2.2
The accumulator described by (2.2.3) is excited by the sequence x(n) = nu(n). De-
termine its output under the condition that:
(8) It is initially relaxed [ie., ¥(—1) = 0].
{b) Initially. y(-1} = 1.

Solution The output of the system is defined as

" -1

PIEICEDS x(k)+Z":x<k)

k=—oc k=-oc k=

V=1 + Y xtk)
k=0

[l

¥y(n)

"

But
nin +1

2
=0

{a) If the system is initially relaxed. y(—1) = 0 and hence

o onn+1)

y(n}y = -7

(b) On the other hand, if the initial condition s y(—1) = 1, then
nn+1) nP4n+2

,v(n)=1+——-—2 =—F n>0

n>0

2.2.2 Block Diagram Representation of Discrete-Time
Systems

It is useful at this point to introduce a block diagram representation of discrete-
time systems. For this purpose we need to define some basic building blocks that
can be interconnected to form complex systems.

An adder. Figure 2.13 illustrates a system (adder) that performs the addi-
tion of two signal sequences to form another (the sum) sequence, which we denote
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Xy}

vin) = x,(r) + xa(n)

Figure 2.13 Graphical representation
xalm) of an adder.

as y(n). Note that it is not necessary to store either one of the sequences in order
to perform the addition. In other words, the addition operation is memoryless.

A constant multiplier. This operation is depicted by Fig. 2.14, and simply
represents applying a scale factor on the input x(n}. Note that this operation is
also memoryless.

Figure 2.14 Graphical representation

x{n) a yin) = ax(n} !
of a constant multiplier.

A signal multipiier. Figure 2.15 illustrates the multiplication of two sig-
nal sequences to form another (the product) sequence, denoted in the figure as
v{n). As in the preceding two cases, we can view the multiplication operation as
memoryless.

xypin) /—\ yny=x(nixyin)
{ X

f

Figure 2.15 Graphical representation
xaln) of a signal muliplier.

A unit delay element. The unit delay is a special system that simply delays
the signal passing through it by one sample. Figure 2.16 illustrates such a system.
If the input signal is x(n}. the output is x(n — 1). In fact, the sample x(n — 1) is
stored in memory at time n — 1 and it is recalled from memory at time » to form

y(m)=x(n—-1

Thus this basic building block requires memory. The use of the symbol :7! to
denote the unit of deiay will become apparent when we discuss the z-transform in
Chapter 3.

x(n) yn)=x(n—1)
-1 Figure 2.16 Graphical representation
of the unit delay element.

A unit advance element. In contrast to the unit delay, a unit advance
moves the input x(n) ahead by one sample in time to yield x(n + 1). Figure 2.17
illustrates this operation. with the operator : being used to denote the unit advance.
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x(n) yny=x(n+1)
z Figure 2.17 Graphical representation

of the unit advance element.

We observe that any such advance is physically impossible in real time, since. in
fact, it involves looking into the future of the signal. On the other hand. if we store
the signal in the memory of the computer, we can recall any sample at any time.
In such a nonreal-time application, it is possible to advance the signal x(n) in time.

Example 2.2.3

Using basic building blocks introduced above. sketch the block diagram representa-
tion of the discrete-time system described by the input~output relation.

[
to
wn

yimy=Liyin D+ ixim + txn - 1 (
where x{n) is the input and v(n) is the output of the svstem.

Solution  According to (2.2.5), the output y(n) is obtained by multiplying the input
x(n) by 0.5, muitiplying the previous input x(n--1) by 0.5. adding the two products, and
then adding the previous output ¥(n — 1) multiplied by }. Figurc 2.18a illustrates this

block diagram realization of the system. A simple rearrangement of (2.2.5). namely,
v(n) = %y(n?])-"-%[.rmj+x(n—]|] (2.2.6)

leads to the block diagram realization shown in Fig. 2,18, Notc that if we treat “the
system” from the “viewpoint™ of an input—output or an external description. we are
not concerned about how the system is realized. On the other hand. if we adopt an

Black box

x(n)

——— yim

x(n)

(b)

Figure 2.18 Block diagram realizations of the system y(n) = 0.25y(n — 1) +
0.5x(n) +0.5x(n = 1).
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internal description of the system. we know exactly how the system building blocks
are configured. In terms of such a realization. we can see that a svstem is relaxed at
time n = ng if the cutputs of all the delays existing in the system are zero at n = ny
(i.e.. al memory is filled with zeros).

2.2.3 Classification of Discrete-Time Systems

In the analysis as well as in the design of systems, it is desirabie to classify the
systems according to the general properties that they satisfy. In fact, the mathe-
matical techniques that we develop in this and in subsequent chapters for analyzing
and designing discrete-time systems depend heavily on the general characteristics
of the systems that are being considered. For this reason it is necessary for us
1o develop a number of properties or categories that can be used to describe the
general characteristics of systems.

We stress the point that for a system to possess a given property, the property
must hold for every possible input signal to the system. If a property holds for
some input signals but not for others, the system does not possess that property.
Thus a counterexample is sufficient to prove that a system does not possess a
property. However, to prove that the system has some property, we must prove
that this property hoids for every possible input signal.

Static versus dynamic systems. A discrete-time system is called static
or memoryless if its output at any instant n depends at most on the tnput sample
at the same time, but not on past or future sampies of the input. In any otber case.
the system is said to be dynamic or to have memory. If the output of a system at
time » is completely determined by the input samples in the interval from n — N
to n(N > 0), the system is said to have memory of duration ¥. If N = 0. the
system is static. If 0 < N < oo, the system is said to have finite memory, whereas
if N = oc, the system is said to have infinite memory.

The systems described by the following input—output equations

y(n) = ax(n) 22.7)

v(n) = nx(n) + bx>(n) (22.8)

are both static or memoryless. Note that there is no need to store any of the past
inputs or outputs in order to compute the present output. On the other hand. the
systems described by the following input—output reiations

y(n) = x(my+3x(n-1) (22.9)

y(m) =Y xtn—k) (2.2.10)
=0

vy =3 xn -k (22.11)
k=0

are dynamic systems or systems with memory. The systems described by (2.2.9)
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and (2.2.10) have finite memory, whereas the system described by (2.2.11) has

infinite memory.
We observe that static or memoryless systems are described in general by
input—output equations of the form

y(n) = T[x(n), n] (22.12)

and they do not include delay elements (memory).

Time-invariant versus time-variant systems. We can subdivide the gen-
eral class of systems into the two broad categories, time-invariant systems and
time-variant systems. A system is called time-invariant if its input—output charac-
teristics do not change with time. To elaborate, suppose that we have a system 7
in a relaxed state which, when excited by an input signal x(n), produces an output
signal y(n). Thus we write

y{n) = Tlx(n)] (2.2.13)

Now suppose that the same input signal is delayed by & units of time to yield
x(n —k), and again applied to the same system. If the characteristics of the system
do not change with time, the output of the relaxed system will be y(n —k). That is,
the output will be the same as the response to x(n). except that it will be delayed
by the same k units in time that the input was delayed. This leads us to define a
time-invariant or shift-invariant system as follows.

Definition. A relaxed system 7 is rme invariant or shift invariant if and
only if
x(n) = y()
implies that
x(n — k) = y(n = k) (2.2.14)

for every input signal x(n) and every time shift k.

To determine if any given system is time invariant, we need to perform the
test specified by the preceding definition. Basically, we excite the system with an
arbitrary input sequence x(n), which produces an output denoted as y(n). Next
we delay the input sequence by same amount k and recompute the output. In
general, we can write the output as

¥(n, kY = Tlx(n - k)]

Now if this output y(n,k) = y(n — k), for all possible values of k, the system is
time invariant. On the other hand, if the output y(n, k) # y(n — k), even for one
value of k, the system is time variant.
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xin) viny = x(ny— xn I

\
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—
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|

“Difterentiator”
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x(n) Yy =nxim

“Time” multipler

0

x{n) [_—l viny=xi—nj
“Folder™
7
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(<)
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+

COS (g
o Figure 2.19 Examples of a
tme-invariant {1} and some time-variant
(d) systems (b)-{d).

Example 2.2.4

Determine if the svsiems shown in Fig. 2.19 are time invariant or time variant.
Solution
(a) This svstem is described by the input-output equations
vy = Tlxin}] =xtny—xtn - 1) (2.2.13)

Now if the input is delayed by & units in time and applied to the system. it is
clear from the block diagram that the output will be

yin ky=xtn-ky—xin—k-1) (2.2.16)

On the other hand. from (2.2.14) we note that if we delay v(n) by k units in
time. we obtain

vin—ky=x(n—k)y—xtn—-k—1) 2.2.17)

Since the right-hand sides of (2.2.16) and (2.2.17) are identical, it follows that
y(n. k) = y(n — k). Therefore, the system is time invariant.
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(b) The input-output equation for this system is
y(n) = T{x{r)] = nx{n) (2.2.18)
The response of this system to x{r ~ k) is
y(n, k) = nx(n — k) 2.2.19)
Now if we delay y(n) in (2.2.18) by k units in time, we obtain

y(n—k) = (n~kix(n — k)

(2.2.20)
= nx(n— k) — kx(n - k)
This system is time variant, since y(n, k) # y(n — k).
{c) This system is described by the input-output relation
y(n) = T[x(n)} = x{—n) (22.21)
The response of this system to x{n — k) is
y(n k) =T[x(n —k)) = x(~n — k) (2.2.22)

Now, if we delay the output y(n), as given by (2.2.21), by & units in time, the
result will be
yin —k) =x(—n+k) (2.2.23)

Since y(n, k) # v{n — k), the system is ume variant.

(2) The input—output equation for this system is

~

y(n) = x(n) cos won (2.2.24)
The response of this system to x(n — &) is
v(n, k) = x(n — k) cos wyn (2.2.25

If the expression in (2.2.24) is delayed by k units and the result is compared to
(2.2.25), it is evident that the system is time variant.

Linear versus nonlinear systems. The general class of systems can also
be subdivided into linear systems and nonlinear systems. A linear system is one
that satisfies the superposition principle. Simply stated, the principle of superposi-
tion requires that the response of the system to a weighted sum of signais be equal
to the corresponding weighted sum of the responses (outputs) of the system to each
of the individual input signals. Hence we have the following definition of linearity.

Definition. A relaxed 7 system is linear if and only if
Tlaix1(n) + a2x2(n)] = ay T[x1(n)] + a2 T [x2(n)] (2.2.26)
for any arbitrary input sequences x(n) and x2(»), and any arbitrary constants a;
and a;.

Figure 2.20 gives a pictorial illustration of the superposition principle.
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vin)

x(m)

B e

xs(n)

E\d
e
L |

Figure 2.20 Graphical representation of the superposition principle. T is lincar
if and onty if v(n) = v'(m)

The superposition principle embodied in the relation (2.2.26) can be scpa-
rated into two parts. First, suppose that a; = 0. Then (2.2.26) reduces to
Tlaia(m)] = a\T[x1(n)] = ayyi(n) (2.2.27
where

yi(n) = Tx(n)]

The relation (2.2.27) demonstrates the multiplicative or scaling properiy of a linear

system. That is. if the response of the system to the input x,(n) is y{n). the

response to ayxi{n) 1s simply a1 y1(n). Thus any scaling of the input results in an

identical scaling of the corresponding output.

Second, suppose that a; = @2 =1 in (2.2.26). Then
Tlxi(n) + x2(n)] = Tlxi(m)] + T{x(n)]
= yi{n) + w(n)

This relation demonstrates the additiviry properry of a linear system. The additivity

and multiplicative properties constitute the superposition principie as it applies to

linear systems.

The linearity condition embodied in (2.2.26) can be extended arbitrarily to
any weighted linear combination of signals by induction. In general, we have

(2.2.28)

M-1 M-1
x(n) = Z ayxi(n) BN y(n) = Z a;yi(n) (2.2.29)
k=1 k=1

where
¥i(n) = Tlxe(n)] k=1,2,.... M-1 (2.2.30)
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We observe from (2.2.27) that if a; = 0, then y(n) = 0. In other words. a re-
laxed, linear system with zero input produces a zero output. If a system produces
a nonzero output with a zero input, the system may be either nonrelaxed or non-
linear. If a relaxed system does not satisfy the superposition principle as given by
the definition above, it is called nonlinear.

Example 2.2.5

Determine if the systems described by the following input-output equations are lincar
or norlinear.

(@) v(n) =nx(n)  (b) ¥ =x(n?)  (©) ¥(n) = x*(n)
(d) v(n)=Ax(n)+ B (e) v(n) = ™

Solution
(a) For two input sequences x;(n) and x;(x). the corresponding ocutputs are

yi{n) = nx(n)

(2.2.37)
in) = nx:(n)
A linear combination of the two input sequences results in the outpul
va(n) = Tlarxy(nm) + aaxa(m} = nfarx, () + aaxatn)]
(2.2.32)
= a\nxy(n) + aynxz(n)
On the other hand. a linear combination of the 1wo outputs in (2.2.31) results
in the output
ayvi(n) + @) = aynx; (R} + axnxa{n) (2.2.33)

Since the right-hand sides of (2.2.32) and (2.2.33) are identical. the system is
jinear.

As in part (a). we find the response of the system to two separate input signals
x1(n) and x;(n). The result is

®

-

vi(n) = x(n?)
win) = x(n?)
The output of the system to a linear combination of x;(n) and x2(n) 18
vi(n) = Tlajx;(0) + azxz2(n)] = ayx; (n*) + azxa(n®) (2.2.35%)
Finally. a linear combination of the two outputs in (2.2.36) vields
@y () + azva(n) = arx; (n°) + aaxz(n’) (2.2.36)

By comparing (2.2.35) with (2.2.36). we conclude that the system is linear.
The output of the system is the square of the input. (Electronic devices that
have such an input-output characteristic and are called square-law devices.)
From our previous discussion it is clear that such a system is memoryless. We
now illustrate that this system is nonlinear.

(¢

-
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The responses of the system to two separate input signals are

yeln) =_r]2(n)
N

(2.2.37)

[

yalny = _rz:(n)
The response of the system to a linear combination of these two input signals is
vitn) = Tlawx(n) + axxz(n))

{arx;(n) + azxa(m)}? (2.2.38)

aixin) + 2marxy(n)xa(n) + a3 (n)
On the other hand. if the system is linear. it would produce a inear combination
of the two outputs in (2.2.37). namely,

ay(n) + azva(n) = a,xf(n} + a:x::(n) 2.2.39)
Since the actual outpul of the system. as given by (2.2.38). is not equal Lo
(2.2.39). the system is nonlinear.
Assuming that the system is excited by x;(n) and x;(n) separately. we obtain
the corresponding outputs

d

vi(n) = Axy(ny+ B

(2.2.40)
y2in) = Axa(n)y+ B
A linear combination of x,(n) and x;(n) produces the output
viln} = Tlayx () + azxa(ny)
= Alqixi(n) +axxam)} + B (2.2.41)

= Aax(n)+ wmAnn)+ B

Or the other hand. if the system were linear, its output to the linear combina-
tion of x,(n} and x2(n) would be a linear combination of v,(n) and y.(n}. that 1s.

a vi(n) +axv2(n) =ajAxy(n) + a1 B + axAxa(n) +a: B (2.2.42)
Clearly. (2.2.41) and (2.2.42) are different and hence the system fails to satisfy
the linearity test.

The reason that this system fails to satisfy the linearity test is not that the
system is nonlinear (in fact. the system is described by a linear equation} but
the presence of the constant B. Consequently. the output depends on both the
input excitation and on the parameter B # 0. Hence. for B # 0. the system is
not relaxed. If we set B = 0. the system is now relaxed and the linearity test is
satisfied.

Note that the system described by the input—output equation

vin) =" (2.2.43)

(e

—

is relaxed. If x(n) = 0. we find that v(n) = 1. This is an indication that the
system is nonlinear. This, in fact. is the conclusion reached when the linearity
test. is appled.

Causal versus noncausal systems. We begin with the definition of causal
discrete-time systems.
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Definition. A system is said to be causal if the output of the system at any
time n [i.e., ¥(n)] depends only on present and past inputs [i.e, x(n), x(n — 1),
x(n—2)....), but does not depend on future inputs fi.e., x(n+1), x(n+2),...]. In
mathematical terms, the output of a causal system satisfies an equation of the form

v(n) = Flx(n), x{n = 1), x(n = 2),.. ] (2.2.44)
where F[-] is some arbitrary function.

If a system does not satisfy this definition, it is called noncausal. Such a
system has an output that depends not only on present and past inputs but also
on future inputs.

It is apparent that in real-time signal processing applications we cannot ob-
serve future values of the signal, and hence a noncausal system is physically unreal-
izable (i.e., it cannot be implemented). On the other hand, if the signal is recorded
so that the processing is done off-line (nonreal time), it is possible to implement
a noncausal system, since all values of the signal are available at the time of pro-
cessing. This is often the case in the processing of geophysical signals and images.

Example 2.2.6

Determine if the systems described by the following input-output equations are causal
or noncausal.

(@) ym=xm—x(n—1 () yn) =3, xk)  (c) y(n) =ax(n)
@ vimy=x(n) +3x(n+4) () ¥m=xtnY) (D yn) = x(2n)
(g) yin) = x(-n)

Solution The systems described in parts (a), (b). and (c) are clearly causal, since the
output depends only on the present and past inputs. On the other hand, the systems
in parts (d). (e), and (f) are clearly noncausal, since the output depends on future
values of the input. The system in (g} is also noncausal, as we note by selecting, for
example, n = —1, which vields y(~1) = x(1). Thus the output at n = —1 depends on
the input at n = 1, which is two units of time into the future.

Stable versus unstable systems. Stability is an important property that
must be considered in any practical application of a system. Unstable systems
usually exhibit erratic and extreme behavior and cause overflow in any practical
implementation. Here, we define mathematically what we mean by a stable system,
and later, in Section 2.3.6, we explore the implications of this definition for linear,
time-invariant systems.

Definition.  An arbitrary relaxed system is said to be bounded input-bounded
output (BIBO) stable if and only if every bounded input produces a bounded
output.

The conditions that the input sequence x(n) and the output sequence y(n) are
bounded is translated mathematically to mean that there exist some finite numbers,
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say M, and M,. such that
()l < M, < oc vy < M, < x (2.2.45;
for all n. If. for some bounded input sequence x(n). the output is unbounded
(infinite), the system is classified as unstable.
Example 2.2.7
Consider the nonlincar system described by the input—output equatien
vl = — D+ v
As an input sequence we select the bounded signal
xiny = Cén)
where C is a constant. We also assume that y{—1) = 0. Then the output sequence is
v =C. »Dh=C. »y)=c' ... wm=C
Clearly, the output is unbounded when 1 < IC| < =c. Therefore, the system is BIBO
unstable, since a bounded input sequence has resulted in an unbounded output.

2.2.4 Interconnection of Discrete-Time Systems

Discrete-time systems can be interconnected to form larger systems. There are
two basic ways in which systems can be interconnected: in cascade (series) or in
parallel. These interconnections are illustrated in Fig. 2.21. Note that the two
interconnected systems are different.

In the cascade interconnection the output of the first svstem is

vitn) = Ti|x(m)) (2.2.46)
m | Nimy Covim
__________________ 7'
(a)
vitn)

Figure 2.21 Cascade (a) and paraliel
(b) {b) interconnections of systems.



