UNIT- |
MICROWAVE TRANSMISSION LINES-I

INTRODUCITON

Microwaves are electromagnetic waves with frequencies between 300MHz (0.3GHz) and 300GHz in the

electromagnetic spectrum.

Radio waves are electromagnetic waves within the frequencies 30KHz - 300GHz, and include microwaves.
Microwaves are at the higher frequency end of the radio wave band and low frequency radio waves are at the lower
frequency end.

Mobile phones, phone mast antennas (base stations), DECT cordless phones, Wi-Fi, WLAN, WiMAX and Bluetooth
have carrier wave frequencies within the microwave band of the electromagnetic spectrum, and are pulsed/modulated.
Most Wi-Fi computers in schools use 2.45GHz (carrier wave), the same frequency as microwave ovens. Information
about the frequencies can be found in Wi-Fi exposures and guidelines.

It is worth noting that the electromagnetic spectrum is divided into different bands based on frequency. But the

biological effects of electromagnetic radiation do not necessarily fit into these artificial divisions.

A waveguide consists of a hollow metallic tube of either rectangular or circular cross section used to
guide electromagnetic wave. Rectangular waveguide is most commonly used as waveguide.
waveguides are used at frequencies in the microwave range.

At microwave frequencies ( above 1GHz to 100 GHz ) the losses in the two line transmission system
will be very high and hence it cannot be used at those frequencies . hence microwave signals are

propagated through the waveguides in order to minimize the losses.

Properties and characteristics of waveguide:

1. The conducting walls of the guide confine the electromagnetic fields and thereby
guide the electromagnetic wave through multiple reflections .
2. when the waves travel longitudinally down the guide, the plane waves are

reflected from wall to wall .the process results in a component of either electric or



magnetic fields in the direction of propagation of the resultant wave.

3. TEM waves cannot propagate through the waveguide since it requires an axial
conductor for axial current flow .

4. when the wavelength inside the waveguide differs from that outside the guide, the
velocity of wave propagation inside the waveguide must also be different from
that through free space.

5. if one end of the waveguide is closed using a shorting plate and allowed a wave to
propagate from other end, then there will be complete reflection of the waves

resulting in standing waves.

Wavequides
A waveguide consists of a hollow metallic tube of a rectangular or circular shape used to guide an electromagnetic wave.

Waveguides are used principally at frequencies in the microwave range.
In waveguide the electric and magnetic fields are confined the space with in the guides. Thus no power is lost through
radiation and even the dielectric loss is negligible since the guides are normally air-filled. However, there is some power

loss as heat in the walls of the guide, but the loss is very small.

It is possible to propagate several modes of EM waves with in a waveguide. These modes correspond to solutions of
Maxwell’s Equations for particular waveguide.
If the frequency of the impressed signal is above the cut-off frequency for a given mode, the EM energy can be transmitted

through the guide for that particular mode without attenuation.
The mode which is having the lowest cut-off frequency is called the "'Dominant Mode’
Waveguide are two types

i) Rectangular waveguide ii) Circular waveguide

Rectanqular Waveguide

A Rectangular waveguide is a hollow metallic tube with a rectangular cross section.

When the waves travel longitudinally down the guide because of conducting walls plane waves are reflected from wall to



wall. This process results in a component of either electric or magnetic field in the direction of propagation of the resultant
wave. Therefore the wave is no longer a transverse electromagnetic wave.

Any uniform plane wave in a lossless guide may be resolved into TE and TM waves.

In rectangular guide the modes are designed TEmn or TMmn,

Propagation of waves in Rectanqular wavequides

Consider a rectangular waveguide situated in the rectangular coordinate system with its breadth along x-axis, width along
y-axis and the wave is assume to propagate along the z-direction. Waveguide is filled with air. In a waveguide no TEM

wave is exists.

TEM(Transverse Electromagnetic wave): in TEM both electric and magnetic fields are purely transverse to the

direction of propagation and consequens have no ‘z’ directed E & H components.

TE(Transverse Electric Wave) In TE wave only the E field is purely transverse to the direction of propagation and the

magnetic field is not purely transverse
i.e. Ez=0,Hz#0

TM(Transverse Magnetic Wave) In TE wave only the H field is purely transverse to the direction of propagation and the

Electric field is not purely transverse

i.e. EA#0,H,=0

HE(Hybrid wave) In this neither electric nor magnetic fields are purely transverse to the direction of propagation.
i.e. EA#0, HA#0

WAVE EQUATIONS

Since we assumed that the wave direction is along z-direction then the wave equation are
V2E;= -0’ueE, for TM wave------- (1)

V?H,= -o’ueH; for TE wave ------- )

Where E,=Eoe V% , Hy=Hpe VZ-m-mmmmmmmmememeee (3)

The condition for wave propagation is that y must be imaginary.
Differentiating eqn(3) w.r.t ‘z” we get

0E;/0z= Eoe ~V*(-y)= -yEz----------------- 4

Hence we can define operator d/0z= -y----------- (5)

By differentiating eqn(4) w.r.t ‘z’ we get



0%E/07% = y°E;
We can define the operator

From eqgn(1) we can write
V2E,= -0’ueE;

By expanding  V2E; in rectangular coordinate system

662% + "’;%W Ez=0 for TM wave--------- (7
imi 02Hz | 92HZ 12 =0 for TE WaVe----mmmmmmx
Similarly o T 292 +h* Hz=0 for TE wave (8)

By solving above two partial differential equations we get solutions for E; and H. Using Maxwell’s equations. it is
possible to find the various components along x an y-directions.
From Maxwell’s first equation, we have

VXH= jocE

ax ay az
a/ax a/ay a/aZ = j(DE[Exax"'Eyay"'Ezaz]
Hx Hy Hz

ax— YHy+0H /0y = joeEx 9)
ay— YHyx+OH/0x = -joeEy---------=-=-------- (10)
a; » 0Hyl0x+0Hx /0y = joeEz--------------- (11)
similarly from Maxwell’s 2" equation we have
VXE = —jwuH
By expanding

ax ay az

d/ox 0d/dy 0d/0z= -jo[Hxax+Hyay+Hza;]
Ex Ey Ez

Since d/ 0z =y
ax ay az

a/ ox 6/ ay —-Y = -j(,O[Hxax+Hyay+HZaZ]
Ex Ey Ez

By comparing ax,ay,a; components
ax— YEy+0Ez/ 0y = -jopuHy------------------ (12)



VEXHE = jouty (13)

OEyldx-0Ex /0y = -joeHzm-------------- (14)
From eqn(13)

0Ez_, .
Hy= [ YExtS]) jop --emeeeees (15)

By substituting eqn(15) in eqn(9) we get
yz/jmuEx+y/jooe%+ 0H/0y= joeEx
since y?+m?pe= h?

by dividing the above equation with h? we get

Ex= Y2 jop/h OH ) y----rr--- (15)
Similarly
Ey= Y22 j0e/h? OE 0y ----m-- (16)
And
= /22y o U2 O OV -meemme-
Hx= -y/h aX+Joau/h J0E/0y a7
= /h208Z_ W2 BE ] O mmemeemew
Hy= -y/h ™ jou/h* 0E.l0x (18)

These equations give a general relationship for field components with in a waveguide.
Propagation of TEM Waves:

For TEM wave

E,=0 and H,=0

Substituting these values in equns (15) to (18) all the field components along x and y directions Ex,Ey,Hx,Hy vanish and

have a TEM wave cannot exist inside a waveguide.

Modes
The electromagnetic wave inside a waveguide can have an infinite number of patterns which are called modes.
The electric field cannot have a component parallel to the surface i.e. the electric field must always be perpendicular to the

surface at the conductor.

The magnetic field on the other hand always parallel to the surface of the conductor and cannot have a component
perpendicular to it at the surface.



TE Mode Analysis
The TEmn modes in a rectangular waveguide are characterized by Ez=0. The z component of the magnetic field,Hz must

exist in order to have energy transmission in the guide.
The wave equation for TE wave is given by
V2Hz = —w2peHz-------- (1)

. 02Hz 02Hz 02Hz
l.e. = —w2ueHz
€ 0x2 + dy2 + 0z2 wspe

02Hz 02Hz
+
0x2

+y2Hz+(o ueHz=0

02Hz 62Hz
0x2

+(y2+oa ue)Hz=0 v2+m?pe=h?

02Hz 02Hz

6x2+6

T — @)

This is a partial differential equation whose solution can be assumed.
Assume a solution

Hz=XY

Where X=pure function of x only

Y= pure function of y only

From equation 2

a
2[xY] n 62[XY
0x2

+h? XY=0

Y2 4 X02Y /9y2+h2 XY=0

Dividing above equation with XY on both sides

02X

X2+ 1/Y02Y /9y 2:+h? =0--m--m-- 3)

Here 1/X— is purely a function of x and 1/Y32Y/dy2 is purely a function of y

62X

Let 1/X -B2& 1/Y32Y /dy2 = -A?
i.e. from equation 3

-B2-A2+h?=0

i.e. h>=A%+B%------- 4
X=cicosBx+czsinBx
Y=C3C0SAy+CsSinAy

i.e. the complete solution for H=XY is



Hz= ( c1c0sBx+C2sinBx)( C3cosAy+CasinAy)----(5)
Where c1,c2,c3and c4 are constants which can be evaluated by applying boundary conditions.

Boundary Conditions

Since we consider a TE wave propagating along z direction. So Ez=0 but we have components along x and y direction.
Ex=0 waves along bottom and top walls of the waveguide

Ey=0 waves along left and right walls of the waveguide

1% Boundary condition:

Ex=0 at y=0 V x— 0 to a(bottom wall)

2" Boundary condition

Ex=0 at y=b V x— 0 to a (top wall)

3" Boundary condition

E,=0 at x=0 Vv y— 0 to b (left side wall)

4™ Boundary condition

E,=0 at x=a V y— 0 to b (right side wall)

i) Substituting 1% Boundary condition in eqn(5)

Since we have

Ex= -y/h?dEz/0x-jon/h?0H z/0y-----(6)

Since Ez=0 —» Ex= -jou/h?d[( clcosBx + c2sinBx)( c3cosAy + c4sinAy)0y]
Ex= -jop/h?0[( c1cosBx + c2sinBx)(—A c3sinAy + Ac4cosAy),dy]

From the first boundary condition we get

0= -jowh?d[( clcosBx + c2sinBx) #0,A#0

c4=0
Substituting the value of ¢4 in egn (5), the solution reduces to
Hz= (clcosBx+c2sinBx)(c3cosAy)-------- ()

ii) from third boundary condition

E,=0atx=0vy—0tob

Since we have

Ey= -y/h?0E / 0y+jopu/h?0H o dx------------ (8)

Since E;=0 and substituting the value of H;in eqn(7), we get
E,= jowh?d[(clcosBx + c2sinBx)(c3cosAy)]/dx

E,= jowh?[(—Bc1sinBx + Bc2sinBx)(c3cosAy)]



From third condition,
0=jou/h?(0+Bc2)c3cosAy
Since cosAy+0,B=+ 0, c3#0
c2=0

fromeq (7)
H,=c1c3cosBxcosAy--------- 9)

iii) 2" Boundary condition

since we have

Ex= -y/h?0E z/0x-jop/h?0Hz 0y

= -jow/h?d,dy[ clc3cosBxcosAy] [Ez=0]
Ex = jowu/h? clc3cosBxsinAy

From the second boundary condition,
Ex=0aty=b VvV x— 0toa

0= jop/h? clc3cosBxsinAb
cosBx#0,c1c3#0

sinAb=0 or Ab=nn where n=0,1,2----

A=nmn/b------ (10)

iv) 4" Boundary condition

since

Ey= -y/h20E /0y +jop/h20H 4l dx

Ey= -jopu/h?d/0x[clc3cosBXcosAy]

E,= -jou/h*c1c3sinBx.BcosAy

From the 4" Boundary condition
E,=0atx=avVy—0tob

0= -jo/h2Bcl1c3sinBx.cosAy V y— 0to b
cosAy#0,c1c3#0

sinBa=0



From eq(9)

H;= clc3cos(mm/a)xcos(nm/b)y

Let clc3=c

Hz=ccos(mn/a)xcos(nn/b)ye U@tV ooememoo (12)
Field Components

Ex= -y/h?0E z/0x-jop/h?0Hz 0y

Since E;=0 for TE wave
Ex=jow/h’c(nn/b)cos(mm/a)xsin(nm/b)ye U@tV Z mmmmm-mn (13)
Ey= -y/h?0E /0y+jou/h?0H . dx

Since E;=0 for TE wave

Ey= jou/h?0H/dx

Ey= -jop/h’c[mn/a]sin(mm/a)xcos(nm/b)ye U@tV 2) mmmeeeemm (14)
Similarly

Hx= -y/h?0H z/0x-joe/?0E /0y

Hy= y/h’c(mm/a)sin(mm/a)xcos(nm/b)ye U@t =¥2) e (15)
Hy= -y/h?0H /0y-jwe/h?0E/0x

Hy= -y/h?c(nm/b)?cos(mm/a)x.sin(nm/b)ye /Pt V% commeemeemee (16)

TM Mode Analysis
For TM wave H;=0 E#0
0%E 4/ 0X2+0%E | 0y*+h?E;=0-------- (1)

This is a partial differential equation which can be solved to get the different field components Ex,Ey Hx and Hy by variable

separable method.

Let us assume a solution

Using these two equations from eqn(1) we get

92X

Y2 4 X02Y /9y2+h2 XY=0----(3)

Dividing above equation with XY on both sides

UXZX 4+ 1/v82Y/0y2+h? =0------- (4)

0x2

Here 1/X‘;27§ is purely a function of x and 1/Y02Y/dy?2 is purely a function of y



1/Y02Y/0y2 = -A%----------- (6)
i.e. from equation (4),(5) and(6)
-B2-A2+h?=0

the solution of eqn(5) and(6) are

X=c1cosBx+czsinBx

Y=C3C0SAy+CsSiNAY

Where c1,c2,c3and ¢4 are constants which can be evaluated by applying boundary conditions
From eqn(1)

Ez= XY

Ez= ( c1cosBx+c2SinBx)( c3cosAy+casinAy)----(10)

Boundary Conditions

Since we consider a TE wave propagating along z direction. So Ez=0 but we have components along x and y direction.
Ex=0 waves along bottom and top walls of the waveguide
E,=0 waves along left and right walls of the waveguide
1 Boundary condition:

Ex=0 at y=0 V x— 0 to a(bottom wall)

2" Boundary condition

Ex=0 at y=b V x— 0 to a (top wall)

3'Y Boundary condition

Ey=0 at x=0 V y— 0 to b (left side wall)

4™ Boundary condition

Ey=0 at x=a V y— 0 to b (right side wall)

i) Substituting 1% Boundary condition in eqn(10)

Since we have

0=Ez= [c1icosBx+cosinBx][c3cosA0+c4SinAQ]
[clcosBx+c2sinBx]c3=0

clcosBx+c2sinBx#0

c3=0

I.e. E;=[clcosBx+c2sinBx]c4sinAy-------- (11)



i) Substituting 2" Boundary condition in eqn(11), we get
E,=c2c4sinBxsinAy------ (12)

iii) Substituting 3" Boundary condition in eqn(12), we get
sinAb=0

A=nn/b-------- (13)

iv) Substituting 4" Boundary condition in eqn(12), we get
sinBa=0

From (12),(13),(14)

E=csin(mn/a)xsin(nn/b)ye’ (¥¢=V2)emmemem-- (15)

Ex= -y/h?0E,/dX

Ex= -y/h’c(mn/a)cos(mn/a)xsin(nm/b)ye/ @t V% ------ (16)

Ey= -y/h%c(nn/b)sin(mmn/a)xcos(nm/b)ye/©t V7 —mmmmmm- (17)
Hx=joe/h?c(nm/b)sin(mm/a)xcos(nm/b)ye/ @tV 7 mmeemmv (18)
Hy= joe/h?c[mn/a]cos(mm/a)xsin(nm/b)ye/ @t Y7 meemmv (19)

Cut-off Frequency of a Wavequide

Since we have

v2+ ol pe=h?=A%+B2
A=nn/b,B=mmn/a
v?=(mm/a)*+(nn/b)-wpe
1=V /by pe=or
At lower frequencies

v>0

(TnT")2+(nn/b)2-w2uc> 0
vy then becomes real and positive and equal to the attenuation constant a i.e. the wave is completely attenuated and there is
no phase change. Hence the wave cannot propagate.

However at higher frequencies, y<0
V(ED)*H(n/b)*-w?pe<0

v becomes imaginary there will be phase change B and hence the wave propagates.



At the transition y becomes zero and the propagation starts. The frequency at which y just becomes zero is defined as the
cut-off frequency fc

At f=fc,y=0

0=(mmn/a)*+(nm/b)2-oc2pie or

fe=1/2nV pe[(mn/a)>+(nn/b)?] 2

fe=c/2[(mn/a)*+(nn/b)?] 2

The cut-off wavelength(\c) is

Ae=Clfe=c/c/2[(mm/a)>+(nm/b)?] Y2

Aemn=2ab/[m?b?+n?a?]*2

All wavelengths greater than Acare attenuated and these less than A¢ are allowed to propagate inside the waveguide.

Guided Wavelength ().q)

It is defined as the distance travelled by the wave in order to undergo a phase shift of 2z radians.

It is related to phase constant by the relation

Ag=27/P

the wavelength in the waveguide is different from the wavelength in free space. Guide wavelength is related to free space
wavelength Ao and cut-off wavelength A¢ by

1/Ag?=1/Mo?-1/Ae?

The above equation is true for any mode in a waveguide of any cross section

Phase Velocity(vp)

Wave propagates in the waveguide when guide wavelength Ag is grater than the free space wavelength Ao.

In a waveguide, vp= Agf where v is the phase velocity. But the speed of light is equal to product of Ao and f.This v, is
greater then the speed of light since Ag> Ao.

The wavelength in the guide is the length of the cycle and v, represents the velocity of the phase.

It is defined as the rate at which the wave changes its phase interms of the guide wavelength.

Vp=0/p

Vp=c/[1-(ho/Ac)?] M2

Group Velocity(vg)

The rate at which the wave propagates through the waveguide and is given by
Ve=dw/dp



Since p=[pe(w?-wc?)]"

Now differentiating B w.r.t ® we get
V= c[1-(ho/Ae)’]

Consider the product of Vp and Vg
Vp.Vg=c?

Dominant Mode

The mode for which the cut-off wavelength assumes a maximum value.

Aemn= 2ab

Vm2b2+n2a2

Dominant mode in TE
For TEo1 mode Ac01=2b
TE10 mode Ac10=2a

Among all Ac10 has the maximum value since ‘a’ is the larger dimensions than ‘b’. Hence TE10 mode is the dominant mode

in rectangular waveguide.
Dominant Mode in TM

Minimum possible mode is TM11. Higher modes than this also exist.

Degenerate Modes

Two or more modes having the same cut-off frequency are called ‘Degenerate modes’
For a rectangular waveguide TEmn/TMmn modes for which both m#0,n#0 will always be degenerate modes.
Wavelengths and Impedance Relations|[TE & TM WAVES]

Guide Wavelength();)

It is defined as the distance travelled by the wave in order to under go a phase shift of 2x radians.

1/Ag?=1/ho?-1/Ae?

Wave impedance is defined as the ratio of the strength of electric field in one transverse direction to the strength of the
magnetic field along the other transverse direction.

Z7=Ex/Hy

1) Wave impedance for a TM wave in rectangular waveguide

Z7= -y/h20E 4 0X-jopdH,/ dy/-y/h>dH, dy-joe/h?OE/ X



For a TM wave H,=0

Ztv= Y/jwe

= B/we

Since we have  P=[0ue-o¢
Zrv= M[1-(ho/e) T

Since ‘Ao is always less than A for wave propagation Ztm<n

2p€] 1/2

2) Wave impedance of TE waves in rectangular waveguide
Zre=1/[1-(ho/e) ]
Therefore Zte> 1

For TEM waves between parallel planes the cut-off frequency is zero and wave impedance for TEM wave is the free space
impedance itself

Ztem=1

Microstrip Line

Microstrip Line is an unsymmetrical stripline that is nothing but a parallel plate transmission line having dielectric
substrate, the one face of which is metallised ground and the other face has a thin conducting strip of certain width ‘w’ and
thickness ‘t” some times a cover plate is used for shielding purposes but it is kept much farther away than the ground plane

S0 as not to affect the microstrip field lines.
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