
 

 

UNIT- I 

MICROWAVE TRANSMISSION LINES-I 

 

INTRODUCITON 

 

Microwaves are electromagnetic waves with frequencies between 300MHz (0.3GHz) and 300GHz in the 

electromagnetic spectrum. 

 

Radio waves are electromagnetic waves within the frequencies 30KHz - 300GHz, and include microwaves. 

Microwaves are at the higher frequency end of the radio wave band and low frequency radio waves are at the lower 

frequency end. 

Mobile phones, phone mast antennas (base stations), DECT cordless phones, Wi-Fi,WLAN, WiMAX and Bluetooth 

have carrier wave frequencies within the microwave band of the electromagnetic spectrum, and are pulsed/modulated. 

Most Wi-Fi computers in schools use 2.45GHz (carrier wave), the same frequency as microwave ovens. Information 

about the frequencies can be found in Wi-Fi exposures and guidelines. 

It is worth noting that the electromagnetic spectrum is divided into different bands based on frequency. But the 

biological effects of electromagnetic radiation do not necessarily fit into these artificial divisions. 

A waveguide consists of a hollow metallic tube of either rectangular or circular cross section used to 

guide electromagnetic wave. Rectangular waveguide is most commonly used as waveguide. 

waveguides are used at frequencies in the microwave range. 

At microwave frequencies ( above 1GHz to 100 GHz ) the losses in the two line transmission system 

will be very high and hence it cannot be used at those frequencies . hence microwave signals are 

propagated through the waveguides in order to minimize the losses. 

Properties and characteristics of waveguide: 

 

1. The conducting walls of the guide confine the electromagnetic fields and thereby 

guide the electromagnetic wave through multiple reflections . 

2. when the waves travel longitudinally down the guide, the plane waves are 

reflected from wall to wall .the process results in a component of either electric or 



magnetic fields in the direction of propagation of the resultant wave. 

3. TEM waves cannot propagate through the waveguide since it requires an axial 

conductor for axial current flow . 

4. when the wavelength inside the waveguide differs from that outside the guide, the 

velocity of wave propagation inside the waveguide must also be different from 

that through free space. 

5. if one end of the waveguide is closed using a shorting plate and allowed a wave to 

propagate from other end, then there will be complete reflection of the waves 

resulting in standing waves. 

 

 

Waveguides 

A waveguide consists of a hollow metallic tube of a rectangular or circular shape used to guide an electromagnetic wave. 

Waveguides are used principally at frequencies in the microwave range. 

In waveguide the electric and magnetic fields are confined the space with in the guides. Thus no power is lost through 

radiation and even the dielectric loss is negligible since the guides are normally air-filled. However, there is some power 

loss as heat in the walls of the guide, but the loss is very small. 

 

It is possible to propagate several modes of EM waves with in a waveguide. These modes correspond to solutions of  

Maxwell’s Equations for particular waveguide. 

If the frequency of the impressed signal is above the cut-off frequency for a given mode, the EM energy can be transmitted 

through the guide for that particular mode without attenuation. 

 

The mode which is having the lowest cut-off frequency is called the ’Dominant Mode’ 

 

Waveguide are two types 

i) Rectangular waveguide ii) Circular waveguide 

Rectangular Waveguide 

A Rectangular waveguide is a hollow metallic tube with a rectangular cross section. 

When the waves travel longitudinally down the guide because of conducting walls plane waves are reflected from wall to 



wall. This process results in a component of either electric or magnetic field in the direction of propagation of the resultant 

wave. Therefore the wave is no longer a transverse electromagnetic wave. 

Any uniform plane wave in a lossless guide may be resolved into TE and TM waves. 

In rectangular guide the modes are designed TEmn or TMmn. 

 

Propagation of waves in Rectangular waveguides 

Consider a rectangular waveguide situated in the rectangular coordinate system with its breadth along x-axis, width along 

y-axis and the wave is assume to propagate along the z-direction. Waveguide is filled with air. In a waveguide no TEM 

wave is exists. 

 

TEM(Transverse Electromagnetic wave):  in TEM both electric and magnetic fields are purely transverse to the 

direction of propagation and consequens have no ‘z’ directed E & H components. 

TE(Transverse Electric Wave) In TE wave only the E field is purely transverse to the direction of propagation and the 

magnetic field is not purely transverse 

i.e. Ez=0,Hz#0 

TM(Transverse Magnetic Wave) In TE wave only the H field is purely transverse to the direction of propagation and the 

Electric field is not purely transverse 

i.e. Ez#0,Hz=0 

HE(Hybrid wave) In this neither electric nor magnetic fields are purely transverse to the direction of propagation. 

i.e. Ez#0, Hz#0 

 

WAVE EQUATIONS 

Since we assumed that the wave direction is along z-direction then the wave equation are 

∇2Ez= -ω2μϵEz    for TM wave-------(1) 

∇2Hz= -ω2μϵHz    for TE wave -------(2) 

Where       Ez=E0𝑒−𝛾𝑧 , Hz=H0𝑒−𝛾𝑧------------------(3) 

The condition for wave propagation is that γ must be imaginary. 

Differentiating eqn(3) w.r.t ‘z’ we get 

𝜕𝐸z/𝜕𝑧= E0𝑒−𝛾𝑧(-γ)= -γEz-----------------(4) 

Hence we can define operator  𝜕/𝜕𝑧= -γ-----------(5) 

By differentiating eqn(4) w.r.t ‘z’ we get 



𝜕2Ez/𝜕z2 = γ2Ez 

We can define the operator 

𝜕2/𝜕z2 = γ2---------(6) 

From eqn(1) we can write 

∇2Ez= -ω2μϵEz 

By expanding     ∇2Ez in rectangular coordinate system 

𝜕2𝐸𝑧

𝜕𝑥2
+

𝜕2𝐸𝑧

𝜕𝑦2
+h2 EZ=0 for TM wave---------(7) 

Similarly               
𝜕2𝐻𝑧

𝜕𝑥2
+

𝜕2𝐻𝑧

𝜕𝑦2
+h2 HZ=0 for TE wave-------------(8) 

By solving above two partial differential equations we get solutions for Ez and Hz. Using Maxwell’s equations. it is 

possible to find the various components along x an y-directions. 

From Maxwell’s first equation, we have 

∇XH= jωϵE 

 

𝑎𝑥 𝑎𝑦 𝑎𝑧
𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝐻𝑥 𝐻𝑦 𝐻𝑧

    =  jωϵ[Exax+Eyay+Ezaz] 

 

ax→ γHy+𝜕𝐻z/𝜕𝑦 = jωϵEx______________(9) 

ay→ γHx+𝜕𝐻z/𝜕𝑥 = -jωϵEy--------------------(10) 

az → 𝜕𝐻y/𝜕𝑥+𝜕𝐻𝑥/𝜕𝑦 = jωϵEz---------------(11) 

similarly from Maxwell’s 2nd equation we have 

∇𝑋𝐸 =  −𝑗𝜔𝜇H 

By expanding 

ax ay az
∂/ ∂x ∂/ ∂y ∂/ ∂z

Ex Ey Ez
 = -jω[Hxax+Hyay+Hzaz] 

Since ∂/ ∂z =γ 

ax ay az
∂/ ∂x ∂/ ∂y −γ

Ex Ey Ez
 = -jω[Hxax+Hyay+Hzaz] 

By comparing ax,ay,az components 

ax→ γEy+∂Ez/ ∂y = -jωμHx------------------(12) 



γEx+
∂Ez

∂x
= jωμHy------------------------(13) 

𝜕𝐸y/𝜕𝑥-𝜕𝐸𝑥/𝜕𝑦 = -jωϵHz---------------(14) 

From eqn(13) 

Hy=      [  γEx+
∂Ez

∂x
]/ jωμ ------------(15) 

By substituting eqn(15) in eqn(9) we get 

γ2/jωμEx+γ/jωϵ
∂Ez

∂x
+ 𝜕𝐻z/𝜕𝑦= jωϵEx 

since γ2+ω2μϵ= h2 

by dividing the above equation with h2 we get 

Ex= -γ/h2∂Ez

∂x
- jωμ/h2 𝜕𝐻z/𝜕𝑦----------(15) 

Similarly 

Ey = -γ/h2∂Ez

∂x
+jωϵ/h2 𝜕𝐸z/𝜕𝑦----------(16) 

And 

Hx= -γ/h2∂Hz

∂x
+ jωμ/h2 𝜕𝐸z/𝜕𝑦----------(17) 

Hy= -γ/h2∂Hz

∂y
- jωμ/h2 𝜕𝐸z/𝜕𝑥----------(18) 

These equations give a general relationship for field components with in a waveguide. 

Propagation of TEM Waves: 

For TEM wave 

Ez=0 and Hz=0 

Substituting these values in equns (15) to (18) all the field components along x and y directions Ex,Ey,Hx,Hy vanish and 

have a TEM wave cannot exist inside a waveguide. 

 

Modes 

The electromagnetic wave inside a waveguide can have an infinite number of patterns which are called modes. 

The electric field cannot have a component parallel to the surface i.e. the electric field must always be perpendicular to the 

surface at the conductor. 

 

The magnetic field on the other hand always parallel to the surface of the conductor and cannot have a component 

perpendicular to it at the surface. 

 



 

TE  Mode Analysis 

The TEmn  modes in a rectangular waveguide are characterized by EZ=0. The z component of the magnetic field,HZ must 

exist in order to have energy transmission in the guide. 

The wave equation for TE wave is given by 

∇2Hz = −ω2μϵHz--------(1) 

i.e.  
𝜕2𝐻𝑧

𝜕𝑥2
+

𝜕2𝐻𝑧

𝜕𝑦2
+

𝜕2𝐻𝑧

𝜕𝑧2
= −𝜔2𝜇𝜖𝐻𝑧 

𝜕2𝐻𝑧

𝜕𝑥2
+

𝜕2𝐻𝑧

𝜕𝑦2
+γ2HZ+ω2μϵHZ=0 

𝜕2𝐻𝑧

𝜕𝑥2
+

𝜕2𝐻𝑧

𝜕𝑦2
+(γ2+ω2μϵ)HZ=0                  γ2+ω2μϵ=h2 

𝜕2𝐻𝑧

𝜕𝑥2
+

𝜕2𝐻𝑧

𝜕𝑦2
+h2 HZ=0--------(2) 

This is a partial differential equation whose solution can be assumed. 

Assume a solution 

HZ=XY 

Where  X=pure function of x only 

Y= pure function of y only 

From equation 2 

𝜕2[𝑋𝑌]

𝜕𝑥2
+

𝜕2[𝑋𝑌]

𝜕𝑦2
+h2 XY=0 

Y
𝜕2𝑋

𝜕𝑥2
+ 𝑋𝜕2𝑌/𝜕𝑦2+h2 XY=0 

Dividing above equation with XY on both sides 

1/X
𝜕2𝑋

𝜕𝑥2
+ 1/𝑌𝜕2𝑌/𝜕𝑦2+h2 =0--------(3) 

Here 1/X
𝜕2𝑋

𝜕𝑥2
 is purely a function of x and 1/𝑌𝜕2𝑌/𝜕𝑦2 is purely a function of y 

Let   1/X
𝜕2𝑋

𝜕𝑥2
 =  -B2 & 1/𝑌𝜕2𝑌/𝜕𝑦2 = -A2 

i.e. from equation (3) 

-B2-A2+h2=0 

i.e. h2=A2+B2-------(4) 

X=c1cosBx+c2sinBx 

Y=c3cosAy+c4sinAy 

i.e. the complete solution for Hz=XY is 



HZ= ( c1cosBx+c2sinBx)( c3cosAy+c4sinAy)----(5) 

Where c1,c2,c3 and c4 are constants which can be evaluated by applying boundary conditions. 

Boundary Conditions 

Since  we consider a TE wave propagating along z direction. So EZ=0 but we have components along x and y direction. 

EX=0 waves along bottom and top walls of the waveguide 

Ey=0 waves along left and right walls of the waveguide 

1st Boundary condition: 

EX=0 at y=0 ∀ x→ 0 to a(bottom wall) 

2nd Boundary condition 

EX=0 at y=b ∀ x→ 0 to a (top wall) 

3rd Boundary condition 

Ey=0 at x=0 ∀ y→ 0 to b (left side wall) 

4th Boundary condition 

Ey=0 at x=a ∀ y→ 0 to b (right side wall) 

i) Substituting 1st Boundary condition in eqn(5) 

Since we have 

EX= -γ/h2𝜕𝐸Z/𝜕𝑥-jωμ/h2𝜕𝐻Z/𝜕𝑦-----(6) 

Since EZ=0 →  EX= -jωμ/h2𝜕[( c1cosBx + c2sinBx)( c3cosAy + c4sinAy)/𝜕𝑦] 

EX= -jωμ/h2𝜕[( c1cosBx + c2sinBx)(−A c3sinAy + Ac4cosAy)/𝜕𝑦] 

From the first boundary condition we get 

0= -jωμ/h2𝜕[( c1cosBx + c2sinBx) ≠0,A≠0 

c4=0 

Substituting the value of c4  in eqn (5), the solution reduces to 

HZ= (c1cosBx+c2sinBx)(c3cosAy)--------(7) 

ii) from third boundary condition 

Ey=0 at x=0 ∀ y→ 0 to b 

Since we have 

Ey= -γ/h2𝜕𝐸z/𝜕𝑦+jωμ/h2𝜕𝐻z/𝜕𝑥------------(8) 

Since Ez=0 and substituting the value of  Hz in eqn(7), we get 

Ey= jωμ/h2𝜕[(c1cosBx + c2sinBx)(c3cosAy)]/𝜕𝑥 

Ey= jωμ/h2[(−Bc1sinBx + Bc2sinBx)(c3cosAy)] 



From third condition, 

0=jωμ/h2(0+Bc2)c3cosAy 

Since cosAy≠0,B≠ 0, c3#0 

c2=0 

from eq (7) 

Hz=c1c3cosBxcosAy---------(9) 

 

iii) 2nd Boundary condition 

since we have 

Ex= -γ/h2𝜕𝐸Z/𝜕𝑥-jωμ/h2𝜕𝐻Z/𝜕𝑦 

=  -jωμ/h2𝜕/𝜕𝑦[ c1c3cosBxcosAy] [EZ=0] 

Ex   =  jωμ/h2 c1c3cosBxsinAy 

From the second boundary condition, 

Ex=0 at y=b ∀ x→ 0 to a 

0= jωμ/h2 c1c3cosBxsinAb 

cosBx#0,c1c3#0 

sinAb=0 or Ab=nπ where n=0,1,2---- 

 

A=nπ/b------(10) 

 

iv) 4th Boundary condition 

since 

Ey= -γ/h2𝜕𝐸z/𝜕𝑦+jωμ/h2𝜕𝐻z/𝜕𝑥 

Ey= -jωμ/h2𝜕/𝜕𝑥[c1c3cosBxcosAy] 

Ey= -jωμ/h2c1c3sinBx.BcosAy 

From the 4th Boundary condition 

Ey=0 at x=a ∀ y→ 0 to b 

0= -jωμ/h2Bc1c3sinBx.cosAy ∀ y→ 0 to b 

cosAy#0,c1c3#0 

sinBa=0 

B=mπ/a-------(11) 



From eq(9) 

Hz= c1c3cos(mπ/a)xcos(nπ/b)y 

Let c1c3=c 

HZ=ccos(mπ/a)xcos(nπ/b)y𝑒(𝑗𝜔𝑡−𝛾𝑧)---------(12) 

Field Components 

Ex= -γ/h2𝜕𝐸Z/𝜕𝑥-jωμ/h2𝜕𝐻Z/𝜕𝑦 

Since Ez=0 for TE wave 

Ex=jωμ/h2c(nπ/b)cos(mπ/a)xsin(nπ/b)y𝑒(𝑗𝜔𝑡−𝛾𝑧--------(13) 

Ey= -γ/h2𝜕𝐸z/𝜕𝑦+jωμ/h2𝜕𝐻z/𝜕𝑥 

Since Ez=0 for TE wave 

Ey= jωμ/h2𝜕𝐻z/𝜕𝑥 

Ey= -jωμ/h2c[mπ/a]sin(mπ/a)xcos(nπ/b)y𝑒(𝑗𝜔𝑡−𝛾𝑧)---------(14) 

Similarly 

Hx= -γ/h2𝜕𝐻Z/𝜕𝑥-jωϵ/h2𝜕𝐸Z/𝜕𝑦 

Hx= γ/h2c(mπ/a)sin(mπ/a)xcos(nπ/b)y𝑒(𝑗𝜔𝑡−𝛾𝑧)----------------(15) 

Hy= -γ/h2𝜕𝐻z/𝜕𝑦-jωϵ/h2𝜕𝐸z/𝜕𝑥 

Hy= -γ/h2c(nπ/b)2cos(mπ/a)x.sin(nπ/b)y𝑒𝑗𝜔𝑡−𝛾𝑧----------------(16) 

TM Mode Analysis 

For TM wave Hz=0 Ez#0 

𝜕2Ez/𝜕x2+𝜕2Ez/𝜕y2+h2Ez=0--------(1) 

This is a partial differential equation which can be solved to get the different field components Ex,Ey,Hx and Hy by variable 

separable method. 

Let us assume a solution 

Ez=XY------------(2) 

Using these two equations from eqn(1) we get 

Y
𝜕2𝑋

𝜕𝑥2
+ 𝑋𝜕2𝑌/𝜕𝑦2+h2 XY=0-----(3) 

Dividing above equation with XY on both sides 

1/X
𝜕2𝑋

𝜕𝑥2
+ 1/𝑌𝜕2𝑌/𝜕𝑦2+h2 =0--------(4) 

Here 1/X
𝜕2𝑋

𝜕𝑥2
 is purely a function of x and 1/𝑌𝜕2𝑌/𝜕𝑦2 is purely a function of y 



Let   1/X
𝜕2𝑋

𝜕𝑥2
 =  -B2-----------(5) 

1/𝑌𝜕2𝑌/𝜕𝑦2 = -A2-----------(6) 

i.e. from equation (4),(5) and(6) 

-B2-A2+h2=0 

i.e. h2=A2+B2-------(7) 

the solution of eqn(5) and(6) are 

X=c1cosBx+c2sinBx 

Y=c3cosAy+c4sinAy 

Where c1,c2,c3 and c4 are constants which can be evaluated by applying boundary conditions 

From eqn(1) 

EZ= XY 

EZ= ( c1cosBx+c2sinBx)( c3cosAy+c4sinAy)----(10) 

Boundary Conditions 

Since we consider a TE wave propagating along z direction. So EZ=0 but we have components along x and y direction. 

EX=0 waves along bottom and top walls of the waveguide 

Ey=0 waves along left and right walls of the waveguide 

1st Boundary condition: 

EX=0 at y=0 ∀ x→ 0 to a(bottom wall) 

2nd Boundary condition 

EX=0 at y=b ∀ x→ 0 to a (top wall) 

3rd Boundary condition 

Ey=0 at x=0 ∀ y→ 0 to b (left side wall) 

4th Boundary condition 

Ey=0 at x=a ∀ y→ 0 to b (right side wall) 

i) Substituting 1st Boundary condition in eqn(10) 

Since we have 

0=EZ= [c1cosBx+c2sinBx][c3cosA0+c4sinA0] 

[c1cosBx+c2sinBx]c3=0 

c1cosBx+c2sinBx#0 

c3=0 

i.e. Ez=[c1cosBx+c2sinBx]c4sinAy--------(11) 



ii) Substituting 2nd Boundary condition in eqn(11), we get 

Ez=c2c4sinBxsinAy------(12) 

iii) Substituting 3rd Boundary condition in eqn(12), we get 

sinAb=0 

A=nπ/b--------(13) 

iv) Substituting 4th Boundary condition in eqn(12), we get 

sinBa=0 

B=mπ/a-------(14) 

From (12),(13),(14) 

Ez=csin(mπ/a)xsin(nπ/b)y𝑒𝑗(𝜔𝑡−𝛾𝑧)----------(15) 

Ex= -γ/h2𝜕Ez/𝜕x 

Ex= -γ/h2c(mπ/a)cos(mπ/a)xsin(nπ/b)y𝑒𝑗𝜔𝑡−𝛾𝑧------(16) 

Ey= -γ/h2c(nπ/b)sin(mπ/a)xcos(nπ/b)y𝑒𝑗𝜔𝑡−𝛾𝑧--------(17) 

Hx=jωϵ/h2c(nπ/b)sin(mπ/a)xcos(nπ/b)y𝑒𝑗𝜔𝑡−𝛾𝑧--------(18) 

Hy= jωϵ/h2c[mπ/a]cos(mπ/a)xsin(nπ/b)y𝑒𝑗𝜔𝑡−𝛾𝑧--------(19) 

 

Cut-off Frequency of a Waveguide 

Since we  have 

γ2+ω2μϵ=h2=A2+B2 

A=nπ/b,B=mπ/a 

γ2=(mπ/a)2+(nπ/b)2-ω2μϵ 

γ=√(
𝑚𝜋

𝑎
)2+(nπ/b)2-ω2μϵ=α+jβ 

At lower frequencies 

γ> 0 

√
(𝑚𝜋

𝑎
)2+(nπ/b)2-ω2μϵ> 0 

γ then becomes real and positive and equal to the attenuation constant α i.e. the wave is completely attenuated and there is 

no phase change. Hence the wave cannot propagate. 

However at higher frequencies, γ<0 

√(
𝑚𝜋

𝑎
)2+(nπ/b)2-ω2μϵ<0 

γ becomes imaginary there will be phase change β and hence the wave propagates. 



At the transition γ becomes zero and the propagation starts. The frequency at which γ just becomes zero is defined as the 

cut-off frequency fc 

At f=fc,γ=0 

0=(mπ/a)2+(nπ/b)2-ωc
2μϵ or 

fc=1/2π√𝜇𝜖[(mπ/a)2+(nπ/b)2]1/2 

fc=c/2[(mπ/a)2+(nπ/b)2]1/2 

The cut-off wavelength(λc) is 

λc=c/fc=c/c/2[(mπ/a)2+(nπ/b)2]1/2 

λcm,n=2ab/[m2b2+n2a2]1/2 

All wavelengths greater than λc are attenuated and these less than λc  are allowed to propagate inside the waveguide. 

 

 

Guided Wavelength (λg) 

It is defined as the distance travelled by the wave in order to undergo a phase shift of 2π radians. 

It is related to phase constant by the relation 

λg=2π/β 

the wavelength in the waveguide is different from the wavelength in free space. Guide wavelength is related to free space 

wavelength λ0 and cut-off wavelength λc by 

1/λg
2=1/λ0

2-1/λc
2 

The above equation is true for any mode in a waveguide of any cross section 

Phase Velocity(vp) 

Wave propagates in the waveguide when guide wavelength  λg  is grater than the free space wavelength λ0. 

In a waveguide, vp= λgf where vp is the phase velocity. But the speed of light is equal to product of λ0 and f.This vp  is 

greater then the speed of light since λg> λ0. 

The wavelength in the guide is the length of the cycle and vp represents the velocity of the phase. 

It is defined as the rate at which the wave changes its phase interms of the guide wavelength. 

Vp=ω/β 

Vp=c/[1-(λ0/λc)
2]1/2 

Group Velocity(vg) 

The  rate at which the wave propagates through the waveguide and is given by 

Vg=dω/dβ 



 

Since β=[μϵ(ω2-ωc
2)]1/2 

Now differentiating  β w.r.t ω we get 

Vg= c[1-(λ0/λc)
2]1/2 

Consider the product of Vp and Vg 

VP.Vg=c2 

Dominant Mode 

The mode for which the cut-off wavelength assumes a maximum value. 

λcmn= 2𝑎𝑏

√𝑚2𝑏2+𝑛2𝑎2

 

 

Dominant mode in TE 

For TE01 mode λc01=2b 

TE10 mode λc10=2a 

Among all λc10 has the maximum value since ‘a’ is the larger dimensions than ‘b’. Hence TE10 mode is the dominant mode 

in rectangular waveguide. 

Dominant Mode in TM 

Minimum possible mode is TM11. Higher modes than this also exist. 

 

Degenerate Modes 

Two or more modes having the same cut-off frequency are called ‘Degenerate modes’ 

For a rectangular waveguide TEmn/TMmn modes for which both m#0,n#0 will always be degenerate modes. 

Wavelengths and Impedance Relations[TE &TM WAVES] 

 

Guide Wavelength(λg) 

It is defined as the distance travelled by the wave in order to under  go a phase shift of 2π radians. 

1/λg
2=1/λ0

2-1/λc
2 

Wave impedance is defined as the ratio of the strength of electric field in one transverse direction to the strength of the 

magnetic field along the other transverse direction. 

ZZ=Ex/Hy 

1) Wave impedance for a TM wave in rectangular waveguide 

ZZ= -γ/h2𝜕𝐸z/𝜕x-jωμ𝜕Hz/𝜕y/-γ/h2𝜕Hz/𝜕y-jωϵ/h2𝜕Ez/𝜕x 



For a TM wave Hz=0 

ZTM= γ/jωϵ 

= β/ωϵ 

Since we have        β=[ω2μϵ-ωc
2μϵ]1/2 

ZTM= ἠ[1-(λ0/λc)
2]1/2 

Since ‘λ0 is always less than λc for wave propagation ZTM<ἠ 

2) Wave impedance of TE waves in rectangular waveguide 

ZTE= ἠ/[1-(λ0/λc)
2]1/2 

Therefore  ZTE> ἠ 

 

For TEM waves between parallel planes the cut-off frequency is zero and wave impedance for TEM wave is the free space 

impedance itself 

ZTEM= ἠ 

Microstrip Line 

Microstrip Line is an unsymmetrical stripline that is nothing but a parallel plate transmission line having dielectric 

substrate, the one face of which is metallised ground and the other face has a thin conducting strip of certain width ‘w’ and 

thickness ‘t’ some times a cover plate is used for shielding purposes but it is kept much farther away than the ground plane 

so as not to affect the microstrip field lines. 
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