3.4 SLIDING WINDOW PROTOCOLS

In the previous protocols, data frames were transmitted in one direction only.
In most practical situations, there is a need for transmitting data in both directions.
Onc way of achieving full-duplex data transmission is to have two separate com-
munication channels and use each one for simplex data traffic (in different direc-
tions). If this is done, we have two separate physical circuits, each with a “for-
ward"” channel (for data) and a “reverse’” channel (for acknowledgements). In
both cases the bandwidth of the reverse channel is almost entirely wasted. In
effect, the user is paying for two circuits but using only the capacity of one.

A better idea is to use the same circuit for data in both directions. After all, in
protocols 2 and 3 it was already being used to transmit frames both ways, and the
reverse channel has the same capacity as the forward channel. In this model the
data frames from A to B are intermixed with the acknowledgement frames from A
to B. By looking at the kind field in the header of an incoming frame, the receiver
can tell whether the frame 1s data or acknowledgement.

Although interleaving data and control frames on the same circuit is an
improvement over having two separate physical circuits, yet another improvement
1s possible. When a data frame armives, instead of immediately sending a separate
control frame, the receiver restrains itself and waits until the network layer passes
it the next packet. The acknowledgement is attached to the outgoing data frame
(using the ack field in the frame header). In effect, the acknowledgement gets a
free ride on the next outgoing data frame. The technique of temporarily delaying
outgoing acknowledgements so that they can be hooked onto the next outgoing
data frame is known as piggybacking.

The principal advantage of using piggybacking over having distinct acknowl-
edgement frames is a better use of the available channel bandwidth. The ack field
in the frame header costs only a few bits, whereas a separate frame would need a
header, the acknowledgement, and a checksum. In addition, fewer frames sent
means fewer “frame arrival” interrupts, and perhaps fewer buffers in the receiver,
depending on how the receiver's software is organized. In the next protocol to be
examined, the piggyback field costs only 1 bit in the frame header. It rarely costs
more than a few bits.

However, piggybacking introduces a complication not present with separate
acknowledgements. How long should the data link layer wait for a packet onto
which to piggyback the acknowledgement? If the data link layer waits longer
than the sender’s timeout period, the frame will be retransmitted, defeating the
whole purpose of having acknowledgements. If the data link layer were an oracle
and could foretell the future, it would know when the next network layer packet
was going to come in and could decide either to wait for it or send a separate ac-
knowledgement immediately, depending on how long the projected wait was
going 1o be. Of course, the data link layer cannot foretell the future, so it must
resort to some ad hoc scheme, such as waiting a fixed number of milliseconds. If

Scanned with CamScanner

a new packet arrives quickly, the acknowledgement is piggybacked onto it; other-
wise, if no new packet has arrived by the end of this time period, the data link
layer just sends a separate acknowledgement frame.

The next three protocols are bidirectional protocols that belong to a class
called sliding window protocols. The three differ among themselves in terms of
efficiency, complexity, and buffer requirements, as discussed later. In these, as in
all sliding window protocols, each outbound frame contains a sequence number,
ranging from O up to some maximum. The maximum is usually 2" — 1 so the
sequence number fits exactly in an n-bit field. The stop-and-wait sliding window
protocol uses n = 1, restricting the sequence numbers to 0 and 1, but more sophis-
ticated versions can use arbitrary n.

The essence of all sliding window protocols is that at any instant of time, the
sender maintains a set of sequence numbers corresponding to frames it is permit-
ted to send. These frames are said to fall within the sending window. Similarly,
the receiver also maintains a receiving window corresponding to the set of frames
it is permitted to accept. The sender’'s window and the receiver's window need
not have the same lower and upper limits or even have the same size. In some
protocols they are fixed in size, but in others they can grow or shrink over the
course of time as frames are sent and received.

Although these protocols give the data link layer more freedom about the ord-
er in which 1t may send and receive frames, we have definitely not dropped the
requirement that the protocol must deliver packets to the destination network layer
in the same order they were passed to the data link layer on the sending machine.
Nor have we changed the requirement that the physical communication channel is
“wire-like,” that is, it must deliver all frames in the order sent.

The sequence numbers within the sender’'s window represent frames that have
been sent or can be sent but are as yet not acknowledged. Whenever a new packet
arrives from the network layer, it is given the next highest sequence number, and
the upper edge of the window is advanced by one. When an acknowledgement
comes in, the lower edge is advanced by one. In this way the window continu-
ously maintains a list of unacknowledged frames. Figure 3-13 shows an example.

Since frames currently within the sender’s window may ultimately be lost or
damaged in transit, the sender must keep all these frames in its memory for possi-
ble retransmission. Thus, if the maximum window size is n, the sender needs n
buffers to hold the unacknowledged frames. If the window ever grows to its max-
imum size, the sending data link layer must forcibly shut off the network layer
until another buffer becomes free.

The receiving data link layer’s window corresponds to the frames it may
accept. Any frame falling outside the window is discarded without comment.
When a frame whose sequence number 1s equal to the lower edge of the window
1s received, it is passed to the network layer, an acknowledgement is generated,
and the window is rotated by one. Unlike the sender’s window, the receiver’'s win-
dow always remains at its initial size. Note that a window size of 1 means that the

Scanned with CamScanner

Sender 7 0 7 0 7 0 7 0

4] 1 3] 1 (5] 1 6 1
5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3
Receiver
7 0 7 0 7] 7 0]
6 1 6 1 6 1 3] i
5 2 5 2 5 2 5 2
4 3 4 | 4 3 4 3

(a) (b) (c) (d)

Figure 3-13. A sliding window of size 1, with a 3-bit sequence number.
(a) Initially. (b) After the first frame has been sent. (c) Alter the [irst frame has
been received. (d) After the first acknawledgement has been received.

data link layer only accepts frames in order, but for larger windows this is not so.
The network layer, in contrast, is always fed data in the proper order, regardless of
the data link layer's window size.

Figure 3-13 shows an example with a maximum window size of 1. Initially,
no frames are outstanding, so the lower and upper edges of the sender’s window
are equal, but as time goes on, the situation progresses as shown.

3.4.1 A One-Bit Sliding Window Protocol

Before tackling the general case, let us first examine a sliding window proto-
col with a maximum window size of 1. Such a protocol uses stop-and-wait since
the sender transmits a frame and waits for its acknowledgement before sending
the next one.

Figure 3-14 depicts such a protocol. Like the others, it starts out by defining
some variables. Next_frame_to_send tells which frame the sender is trying to
send. Similarly, frame_expected tells which frame the receiver is expecting. In
both cases, 0 and 1 are the only possibilities.

Under normal circumstances, one of the two data link layers goes first and
transmits the first frame. In other words, only one of the data link layer programs
should contain the to_physical_layer and start_timer procedure calls outside the
main loop. In the event that both data link layers start off simultaneously, a

Scanned with CamScanner

peculiar situation arises, as discussed later. The starting machine fetches the first
packet from its network layer, builds a frame from it, and sends it. When this (or
any) frame arrives, the receiving data link layer checks to see if it is a duplicate,
just as in protocol 3. If the frame is the one expected, it is passed to the network
layer and the receiver’s window is slid up.

The acknowledgement field contains the number of the last frame received
without error. If this number agrees with the sequence number of the frame the
sender is trying to send, the sender knows it is done with the frame stored in
buffer and can fetch the next packet from its network layer. If the sequence
number disagrees, it must continue trying to send the same frame. Whenever a
frame is received, a frame is also sent back.

Now let us examine protocol 4 to see how resilient it is to pathological
scenarios. Assume that computer A is trying to send its frame 0 to computer B
and that B is trying to send its frame O to A. Suppose that A sends a frame to B,
but A’s timeout interval is a little too short. Consequently, A may time out repeat-
edly, sending a series of identical frames, all with seq =0 and ack = 1.

When the first valid frame arrives at computer B, it will be accepted and
Sframe_expected will be set o 1. All the subsequent frames will be rejected
because B is now expecting frames with sequence number 1, not 0. Furthermore,
since all the duplicates have ack =1 and B is still waiting for an acknowledge-
ment of 0, B will not fetch a new packet from its network layer.

After every rejected duplicate comes in, B sends A a frame containing seq = 0
and ack = 0. Eventually, one of these arrives correctly at A, causing A to begin
sending the next packet. No combination of lost frames or premature timeouts
can cause the protocol to deliver duplicate packets to either network layer, to skip
a packet, or to deadlock.

However, a peculiar situation arises if both sides simultaneously send an ini-
tial packet. This synchronization difficulty is illustrated by Fig. 3-15. In part (a),
the normal operation of the protocol is shown. In (b) the peculiarity is illustrated.
If B waits for A’s first frame before sending one of its own, the sequence is as
shown in (a), and every frame is accepted. However, if A and B simultaneously
initiate communication, their first frames cross, and the data link layers then get
into situation (b). In (a) each frame arrival brings a new packet for the network
layer; there are no duplicates. In (b) half of the frames contain duplicates, even
though there are no transmission errors. Similar situations can occur as a result of
premature timeouts, even when one side clearly starts first. In fact, if multiple
premature timeouts occur, frames may be sent three or more times.

3.4.2 A Protocol Using Go Back N
Until now we have made the tacit assumption that the transmission time

required for a frame to arrive at the receiver plus the transmission time for the ac-
knowledgement to come back is negligible. Sometimes this assumption is clearly

Scanned with CamScanner

A sends (0, 1, AQ) -\\‘ A sends (0, 1, AD) B sends (0, 1, BO)

B gets (0, 1, AD)* B gets (0, 1, AQ)*
/, B gends (0, 0, BO) B sends (0, 0, BO)
A gets (0, 0, BO)* .
A SHOES-(T A”"‘"““‘"- B gets (1, 0, A1)* igghsdgufﬂt'ﬂ?i}ﬂl
B sends (1, 1, B B gets (0, 0, AQ)
Agets(1,1,B1) — () B sends (1, 0, B1)

A sends (0, 1, A2 A gets (0, 0, BD)
(I— B gets (0, 1, A2)" A sends (1, 0, A1) B0dkn (776, A1
getsi1, 0, *

B sends (0, 0, B2)
Agets (0,0, B2)" = B sends (1, 1, B1)

Asends (0B~ B gets(1,0.a37 | Agets(1,0.B1)

B sends (1, 1, B3) Asands{1.1.ﬁ~1)--_._________ B gets (1, 1, A1)
B sends (0, 1, B2)

Time

(a) (b)

Figure 3-15. Two scenarios for protocol 4. (a) Normal case. (b) Abnormal
case. The notation is (seq, ack, packet number). An asterisk indicates where a
network layer accepls a packel.

false. In these situations the long round-trip time can have important implications
for the efficiency of the bandwidth utilization. As an example, consider a 50-kbps
satellite channel with a 500-msec round-trip propagation delay. Let us imagine
trying to use protocol 4 to send 1000-bit frames via the satellite. At t =0 the
sender starts sending the first frame. At r =20 msec the frame has been com-
pletely sent. Not until r =270 msec has the frame fully arrived at the receiver,
and not until t =520 msec has the acknowledgement arrived back at the sender,
under the best of circumstances (no waiting in the receiver and a short acknowl-
edgement frame). This means that the sender was blocked during 500/520 or 96
percent of the time. In other words, only 4 percent of the available bandwidth was
used. Clearly, the combination of a long transit time, high bandwidth, and short
frame length is disastrous in terms of efficiency.

The problem described above can be viewed as a consequence of the rule
requiring a sender to wait for an acknowledgement before sending another frame.
If we relax that restriction, much better efficiency can be achieved. Basically, the
solution lies in allowing the sender to transmit up to w frames before blocking,
instead of just 1. With an appropriate choice of w the sender will be able to con-
tinuously transmit frames for a time equal to the round-trip transit time without
filling up the window. In the example above, w should be at least 26. The sender
begins sending frame 0 as before. By the time it has finished sending 26 frames,
at t = 520, the acknowledgement for frame 0 will have just arrived. Thereafter,
acknowledgements arrive every 20 msec, so the sender always gets permission to
continue just when it needs 1t. At all umes, 25 or 26 unacknowledged frames are
outstanding. Put in other terms, the sender’s maximum window size is 26.

Scanned with CamScanner

The need for a large window on the sending side occurs whenever the product
of bandwidth x round-trip-delay is large. If the bandwidth is high, even for a
moderate delay, the sender will exhaust its window quickly unless it has a large
window. If the delay is high (e.g., on a geostationary satellite channel), the sender
will exhaust its window even for a moderate bandwidth. The product of these two
factors basically tells what the capacity of the pipe is, and the sender needs the
ability to fill it without stopping in order to operate at peak efficiency.

This technique is known as pipelining. If the channel capacity is b bits/sec,
the frame size [bits, and the round-trip propagation time R sec, the time required
to transmit a single frame is //b sec. After the last bit of a data frame has been
sent, there is a delay of R/2 before that bit arrives at the receiver and another
delay of at least R/2 for the acknowledgement to come back, for a total delay of
R. In stop-and-wait the line is busy for //b and idle for R, giving

line utilization = I /(! + bR)

If I < bR, the efficiency will be less than 50 percent. Since there is always a
nonzero delay for the acknowledgement to propagate back, pipelining can, in
principle, be used to keep the line busy during this interval, but if the interval is
small, the additional complexity is not worth the trouble.

Pipelining frames over an unreliable communication channel raises some seri-
ous issues. First, what happens if a frame in the middle of a long stream is dam-
aged or lost? Large numbers of succeeding frames will arrive at the receiver
before the sender even finds out that anything is wrong. When a damaged frame
arrives at the receiver, it obviously should be discarded, but what should the
receiver do with all the correct frames following it? Remember that the receiving
data link layer is obligated to hand packets to the network layer in sequence. In
Fig. 3-16 we see the effects of pipelining on error recovery. We will now exam-
ine it in some detail.

Two basic approaches are available for dealing with errors in the presence of
pipelining. One way, called go back n, is for the receiver simply to discard all
subsequent frames, sending no acknowledgements for the discarded frames. This
strategy corresponds to a receive window of size 1. In other words, the data link
layer refuses to accept any frame except the next one it must give to the network
layer. If the sender's window fills up before the timer runs out, the pipeline will
begin to empty. Eventually, the sender will time out and retransmit all unac-
knowledged frames in order, starting with the damaged or lost one. This approach
can waste a lot of bandwidth if the error rate is high.

In Fig. 3-16(a) we see go back n for the case in which the receiver’s window
is large. Frames 0 and 1| are correctly received and acknowledged. Frame 2,
however, is damaged or lost. The sender, unaware of this problem, continues to
send frames until the timer for frame 2 expires. Then it backs up to frame 2 and
starts all over with it, sending 2, 3, 4, etc. all over again.

The other general strategy for handling errors when frames are pipelined is

Scanned with CamScanner

IG—TII"I‘IEOIJI iniﬂﬁl'i:':ll—'-l

Error Frames discarded by data link layer

Time ———»

(a)

Error Frames buffered by data link layer
(b)

Figure 3-16. Pipelining and error recovery. Effect of an error when
(a) receiver's window size is | and (b) receiver’s window size is large.

called selective repeat. When it is used, a bad frame that is received is discarded,
but good frames received after it are buffered. When the sender times out, only
the oldest unacknowledged frame is retransmitted. If that frame arrives correctly,
the receiver can deliver to the network layer, in sequence, all the frames it has
buffered. Selective repeat is often combined with having the receiver send a neg-
ative acknowledgement (NAK) when it detects an error, for example, when it re-
ceives a checksum error or a frame out of sequence. NAKSs stimulate retransmis-
sion before the corresponding timer expires and thus improve performance.

In Fig. 3-16(b), frames 0 and 1 are again correctly received and acknowledged
and frame 2 is lost. When frame 3 arrives at the receiver, the data link layer there
notices that 1s has missed a frame, so it sends back a NAK for 2 but buffers 3.
When frames 4 and 5 amive, they, too, are buffered by the data link layer instead
of being passed to the network layer. Eventually, the NAK 2 gets back to the
sender, which immediately resends frame 2. When that arrives, the data link layer
now has 2, 3, 4, and 5 and can pass all of them to the network layer in the correct

Scanned with CamScanner

order. It can also acknowledge all frames up to and including 5, as shown in the
figure. If the NAK should get lost, eventually the sender will time out for frame 2
and send it (and only it) of its own accord, but that may be a quite a while later.
In effect, the NAK speeds up the retransmission of one specific frame.

Selective repeat corresponds to a receiver window larger than 1. Any frame
within the window may be accepted and buffered until all the preceding ones have
been passed to the network layer. This approach can require large amounts of
data link layer memory if the window is large.

These two alternative approaches are trade-offs between bandwidth and data
link layer buffer space. Depending on which resource is scarcer, one or the other
can be used. Figure 3-17 shows a pipelining protocol in which the receiving data
link layer only accepts frames in order; frames following an error are discarded.
In this protocol, for the first time we have dropped the assumption that the net-
work layer always has an infinite supply of packets to send. When the network
layer has a packet it wants to send, it can cause a network_laver_ready event to
happen. However, to enforce the flow control rule of no more than MAX_SEQ
unacknowledged frames outstanding at any time, the data link layer must be able
to keep the network layer from bothering it with more work. The library pro-
cedures enable_network_laver and disable_network_laver do this job.

Note that a maximum of MAX_SEQ frames and not MAX_SEQ + 1 frames
may be outstanding at any instant, even though there are MAX_SEQ + 1 distinct
sequence numbers: 0, 1, 2, ..., MAX_SEQ. To see why this restriction is re-
quired, consider the following scenario with MAX_SEQ =7.

1. The sender sends frames 0 through 7.

2. A piggybacked acknowledgement for frame 7 eventually comes back
to the sender.

3. The sender sends another eight frames, again with sequence numbers
0 through 7.

4. Now another piggybacked acknowledgement for frame 7 comes in.

The question is this: Did all eight frames belonging to the second batch arrive suc-
cessfully, or did all eight get lost (counting discards following an error as lost)?
In both cases the receiver would be sending frame 7 as the acknowledgement.
The sender has no way of telling. For this reason the maximum number of out-
standing frames must be restricted to MAX_SEQ.

Although protocol 5 does not buffer the frames arriving after an error, it does
not escape the problem of buffering altogether. Since a sender may have to
retransmit all the unacknowledged frames at a future time, it must hang on to all
transmitted frames until it knows for sure that they have been accepted by the
receiver. When an acknowledgement comes in for frame n, frames n — 1, n — 2,
and so on are also automatically acknowledged. This property is especially im-

Scanned with CamScanner

portant when some of the previous acknowledgement-bearing frames were lost or
garbled. Whenever any acknowledgement comes in, the data link layer checks to
see 1f any buffers can now be released. If buffers can be released (i.e., there 1s
some room available in the window), a previously blocked network layer can now
be allowed to cause more network_laver_ready events.

For this protocol, we assume that there is always reverse traffic on which to
piggyback acknowledgements. If there is not, no acknowledgements can be sent.
Protocol 4 does not need this assumption since it sends back one frame every time
it receives a frame, even if it has just already sent that frame. In the next protocol
we will solve the problem of one-way traffic in an elegant way.

Because protocol 5 has multiple outstanding frames, it logically needs multi-
ple timers, one per outstanding frame. Each frame times out independently of all
the other ones. All of these timers can easily be simulated in software, using a
single hardware clock that causes interrupts periodically. The pending timeouts
form a linked list, with each node of the list telling the number of clock ticks until
the timer expires, the frame being timed, and a pointer to the next node.

Real

/ time
10:00:00.0 10:00:00.5

¥‘51—""'BE = 6| 3 k'E!-E—"""'Evf:l

\\ Pointer ta next timeout

Frame being timed
Ticks to go

(a) (b)

Figure 3-18. Simulation of multiple timers in software.

As an illustration of how the timers could be implemented, consider the exam-
ple of Fig. 3-18(a). Assume that the clock ticks once every 100 msec. Initially,
the real time is 10:00:00.0; three timeouts are pending, at 10:00:00.5, 10:00:01.3,
and 10:00:01.9. Every time the hardware clock ticks, the real time is updated and
the tick counter at the head of the list is decremented. When the tick counter be-
comes zero, a timeout 1s caused and the node is removed from the list, as shown
in Fig. 3-18(b). Although this organization requires the list to be scanned when
stari_timer or stop_timer is called, it does not require much work per tick. In pro-
tocol 5, both of these routines have been given a parameter, indicating which
frame is to be timed.

Scanned with CamScanner

3.4.3 A Protocol Using Selective Repeat

Protocol 5 works well if errors are rare, but if the line is poor, it wastes a lot
of bandwidth on retransmitted frames. An alternative strategy for handling errors
is to allow the receiver to accept and buffer the frames following a damaged or
lost one. Such a protocol does not discard frames merely because an earlier frame
was damaged or lost.

In this protocol, both sender and receiver maintain a window of acceptable
sequence numbers. The sender’s window size starts out at 0 and grows to some
predefined maximum, MAX_SEQ. The receiver’'s window, in contrast, is always
fixed in size and equal to MAX_SEQ. The receiver has a buffer reserved for each
sequence number within its fixed window. Associated with each buffer is a bit
(arrived) telling whether the buffer is full or empty. Whenever a frame arrives,
its sequence number is checked by the function benween to see if it falls within the
window. If so and if it has not already been received, it is accepted and stored.
This action is taken without regard to whether or not it contains the next packet
expected by the network layer. Of course, it must be kept within the data link
layer and not passed to the network layer until all the lower-numbered frames
have already been delivered to the network layer in the correct order. A protocol
using this algorithm is given in Fig. 3-19.

Nonsequential receive introduces certain problems not present in protocols in
which frames are only accepted in order. We can illustrate the trouble most easily
with an example. Suppose that we have a 3-bit sequence number, so that the
sender is permitted to transmit up to seven frames before being required to wait
for an acknowledgement. Initially, the sender’'s and receiver's windows are as
shown in Fig. 3-20(a). The sender now transmits frames O through 6. The
receiver' s window allows it to accept any frame with sequence number between 0
and 6 inclusive. All seven frames arrive correctly, so the receiver acknowledges
them and advances its window to allow receipt of 7, 0, 1, 2, 3, 4, or 3, as shown In
Fig. 3-20(b). All seven buffers are marked empty.

It is at this point that disaster strikes in the form of a lightning bolt hitting the
telephone pole and wiping out all the acknowledgements. The sender eventually
times out and retransmits frame 0. When this frame arrives at the receiver, a
check is made to see if it falls within the receiver's window. Unfortunately, in
Fig. 3-20(b) frame O is within the new window, so it will be accepted. The
receiver sends a piggybacked acknowledgement for frame 6, since 0 through 6
have been received.

The sender is happy to learn that all its transmitted frames did actually armve
correctly, so it advances its window and immediately sends frames 7, 0, 1, 2, 3, 4,
and 5. Frame 7 will be accepted by the receiver and its packet will be passed
directly to the network layer. Immediately thereafter, the receiving data link layer
checks to see if it has a valid frame 0 already, discovers that it does, and passes
the embedded packet to the network layer. Consequently, the network layer gets

Scanned with CamScanner

an incorrect packet, and the protocol fails.

The essence of the problem is that after the receiver advanced its window, the
new range of valid sequence numbers overlapped the old one. Consequently, the
following batch of frames might be either duplicates (if all the acknowledgements
were lost) or new ones (if all the acknowledgements were received). The poor
receiver has no way of distinguishing these two cases.

The way out of this dilemma lies in making sure that after the receiver has
advanced its window, there is no overlap with the original window. To ensure
that there is no overlap, the maximum window size should be at most half the
range of the sequence numbers, as is done in Fig. 3-20(c) and Fig. 3-20(d). For
example, if 4 bits are used for sequence numbers, these will range from 0 to 15.
Only eight unacknowledged frames should be outstanding at any instant. That
way, if the receiver has just accepted frames 0 through 7 and advanced its window
to permit acceptance of frames 8 through 15, it can unambiguously tell if subse-
quent frames are retransmissions (0 through 7) or new ones (8 through 15). In
general, the window size for protocol 6 will be (MAX_SEQ + 1)/2. Thus, for 3-
bit sequence numbers, the window size is four.

An interesting question is: How many buffers must the receiver have? Under
no conditions will it ever accept frames whose sequence numbers are below the
lower edge of the window or frames whose sequence numbers are above the upper
edge of the window. Consequently, the number of buffers needed is equal to the
window size, not to the range of sequence numbers. In the above example of a 4-
bit sequence number, eight buffers, numbered 0 through 7, are needed. When
frame i arrives, it is put in buffer i mod 8. Notice that although i and (i + 8) mod
8 are “competing’’ for the same buffer, they are never within the window at the
same time, because that would imply a window size of at least 9.

For the same reason, the number of timers needed is equal to the number of
buffers, not to the size of the sequence space. Effectively, a timer is associated
with each buffer. When the timer runs out, the contents of the buffer are retrans-
mitted.

In protocol 5, there is an implicit assumption that the channel is heavily
loaded. When a frame arrives, no acknowledgement is sent immediately. Instead,
the acknowledgement is piggybacked onto the next outgoing data frame. If the
reverse traffic is light, the acknowledgement will be held up for a long period of
time. If there is a lot of traffic in one direction and no traffic in the other direc-
tion, only MAX_SEQ packets are sent, and then the protocol blocks, which is why
we had to assume there was always some reverse traffic.

In protocol 6 this problem is fixed. After an in-sequence data frame arrives,
an auxiliary timer is started by stari_ack_timer. If no reverse traffic has presented
itself before this timer expires, a separate acknowledgement frame is sent. An int-
errupt due to the auxikary timer is called an ack_timeout event. With this ar-
rangement, one-directional traffic flow 1s now possible because the lack of reverse
data frames onto which acknowledgements can be piggybacked is no longer an

Scanned with CamScanner

Sender 0123456|7 0123456|7 0123|14567|0123(4567

Receiver |0 123 45 6|7 0123456 0123|4567 0123|4567

(a) (b) (c) (d)

Figure 3-20. (a) Initial situation with a window of size seven. (b) After seven
frames have been sent and received but not acknowledged. (c) Initial situation
with a window size of four. (d) After four frames have been sent and received
but not acknowledged.

obstacle. Only one auxiliary timer exists, and if srari_ack_rimer is called while
the timer is running, it is reset to a full acknowledgement timeout interval.

It is essential that the timeout associated with the auxiliary timer be appreci-
ably shorter than the timer used for timing out data frames. This condition is
required to make sure a correctly received frame is acknowledged early enough
that the frame’s retransmission timer does not expire and retransmit the frame.

Protocol 6 uses a more efficient strategy than protocol 5 for dealing with
errors. Whenever the receiver has reason to suspect that an error has occurred, it
sends a negative acknowledgement (NAK) frame back to the sender. Such a
frame is a request for retransmission of the frame specified in the NAK. There are
two cases when the receiver should be suspicious: a damaged frame has arrived or
a frame other than the expected one arrived (potential lost frame). To avoid mak-
ing multiple requests for retransmission of the same lost frame, the receiver
should keep track of whether a NAK has already been sent for a given frame. The
variable no_nak in protocol 6 is true if no NAK has been sent yet for
frame_expected. If the NAK gets mangled or lost, no real harm is done, since the
sender will eventually time out and retransmit the missing frame anyway. If the
wrong frame arrives after a NAK has been sent and lost, no_nak will be true and
the auxiliary timer will be started. When it expires, an ACK will be sent to resyn-
chronize the sender to the receiver’s current status.

[n some situations, the time required for a frame to propagate to the destina-
tion, be processed there, and have the acknowledgement come back is (nearly)
constant. In these situations, the sender can adjust its timer to be just slightly lar-
ger than the normal time interval expected between sending a frame and receiving
its acknowledgement. However, if this time is highly variable, the sender is faced
with the choice of either setting the interval to a small value (and risking unneces-
sary retransmissions), or setting it to a large value (and going idle for a long
period after an error).

Both choices waste bandwidth. If the reverse traffic is sporadic, the time

Scanned with CamScanner

before acknowledgement will be irregular, being shorter when there is reverse
traffic and longer when there is not. Variable processing time within the receiver
can also be a problem here. In general, whenever the standard deviation of the
acknowledgement interval is small compared to the interval itself, the timer can
be set “tight” and NAKs are not useful. Otherwise the timer must be set “loose,”
to avoid unnecessary retransmissions, but NAKs can appreciably speed up
retransmission of lost or damaged frames.

Closely related to the matter of timeouts and NAKs is the question of deter-
mining which frame caused a timeout. In protocol 5, it is always ack_expected,
because it is always the oldest. In protocol 6, there is no trivial way to determine
who timed out. Suppose that frames O through 4 have been transmitted, meaning
that the list of outstanding frames i1s 01234, in order from oldest to youngest.
Now imagine that O times out, 5 (a2 new frame) is transmitted, 1 times out, 2 times
out, and 6 (another new frame) is transmitted. At this point the list of outstanding
frames is 3405126, from oldest to youngest. If all inbound traffic (i.e., ac-
knowledgement-bearing frames) is lost for a while, the seven outstanding frames
will time out in that order.

To keep the example from getting even more complicated than it already is,
we have not shown the timer administration. Instead, we just assume that the
variable oldest_frame is set upon timeout to indicate which frame timed out.

Scanned with CamScanner

