4.1 THE CHANNEL ALLOCATION PROBLEM

The central theme of this chapter is how to allocate a single broadcast channel
among competing users. The channel might be a portion of the wireless spectrum
in a geographic region, or a single wire or optical fiber to which multiple nodes
are connected. It does not matter. In both cases, the channel connects each user to
all other users and any user who makes full use of the channel interferes with
other users who also wish to use the channel.

We will first look at the shortcomings of static allocation schemes for bursty

traffic. Then, we will lay out the key assumptions used to model the dynamic
schemes that we examine in the following sections.

4.1.1 Static Channel Allocation

The traditional way of allocating a single channel, such as a telephone trunk,
among multiple competing users is to chop up its capacity by using one of the
multiplexing schemes we described in Sec. 2.5, such as FDM (Frequency Division
Multiplexing). If there are N users, the bandwidth is divided into N equal-sized
portions, with each user being assigned one portion. Since each user has a private
frequency band, there is now no interference among users. When there is only a
small and constant number of users, each of which has a steady stream or a heavy
load of traffic, this division is a simple and efficient allocation mechanism. A
wireless example is FM radio stations. Each station gets a portion of the FM band
and uses it most of the time to broadcast its signal.

However, when the number of senders is large and varying or the traffic is
bursty, FDM presents some problems. If the spectrum is cut up into N regions and
fewer than N users are currently interested in communicating, a large piece of
valuable spectrum will be wasted. And if more than N users want to commumni-
cate, some of them will be denied permission for lack of bandwidth, even if some
of the users who have been assigned a frequency band hardly ever transmit or re-
ceive anything.

Even assuming that the number of users could somehow be held constant at N,
dividing the single available channel into some number of static subchannels is

Scanned with CamScanner

inherently inefficient. The basic problem is that when some users are quiescent,
their bandwidth is simply lost. They are not using it, and no one else is allowed to
use it either. A static allocation is a poor fit to most computer systems, in which
data traffic is extremely bursty, often with peak traffic to mean traffic ratios of
1000:1. Consequently, most of the channels will be idle most of the time.

The poor performance of static FDM can easily be seen with a simple queue-
ing theory calculation. Let us start by finding the mean time delay, 7, to send a
frame onto a channel of capacity C bps. We assume that the frames arrive ran-
domly with an average arrival rate of A frames/sec, and that the frames vary in
length with an average length of 1/u bits. With these parameters, the service rate
of the channel is uC frames/sec. A standard queueing theory result is

1

szC—?L

(For the curious, this result is for an “M/M/1" queue. It requires that the ran-
domness of the times between frame arrivals and the frame lengths follow an
exponential distribution, or equivalently be the result of a Poisson process.)

In our example, if C is 100 Mbps, the mean frame length, 1/, is 10,000 bits,
and the frame arrival rate, A, is 5000 frames/sec, then T =200 pusec. Note that if
we ignored the queueing delay and just asked how long it takes to send a 10,000-
bit frame on a 100-Mbps network, we would get the (incorrect) answer of 100
psec. That result only holds when there is no contention for the channel.

Now let us divide the single channel into N independent subchannels, each
with capacity C/N bps. The mean input rate on each of the subchannels will now
be A/N. Recomputing 7, we get

~ 1 N
W(C/N)- (A/N) puC -2

Ty = NT (4-1)

The mean delay for the divided channel is N times worse than if all the frames
were somehow magically arranged orderly in a big central queue. This same result
says that a bank lobby full of ATM machines is better off having a single queue
feeding all the machines than a separate queue 1n front of each machine.

Precisely the same arguments that apply to FDM also apply to other ways of
statically dividing the channel. If we were to use time division multiplexing
(TDM) and allocate each user every Nth time slot, if a user does not use the allo-
cated slot, it would just lie fallow. The same would hold if we split up the net-
works physically. Using our previous example again, if we were to replace the
100-Mbps network with 10 networks of 10 Mbps each and statically allocate each
user to one of them, the mean delay would jump from 200 psec to 2 msec.

Since none of the traditional static channel allocation methods work well at all
with bursty traffic, we will now explore dynamic methods.

Scanned with CamScanner

4.1.2 Assumptions for Dynamic Channel Allocation

Before we get to the first of the many channel allocation methods in this chap-
ter, it is worthwhile to carefully formulate the allocation problem. Underlying all
the work done in this area are the following five key assumptions:

1. Independent Traffic. The model consists of N independent stations
(e.g., computers, telephones), each with a program or user that gener-
ates frames for transmission. The expected number of frames gener-
ated in an interval of length At is AAt, where A is a constant (the arri-
val rate of new frames). Once a frame has been generated, the sta-
tion is blocked and does nothing until the frame has been suc-
cessfully transmitted.

2. Single Channel. A single channel is available for all communica-
tion. All stations can transmit on it and all can receive from it. The
stations are assumed to be equally capable, though protocols may
assign them different roles (e.g., priorities).

3. Observable Collisions. If two frames are transmitted simultan-
eously, they overlap in time and the resulting signal is garbled. This
event is called a collisiom. All stations can detect that a collision has
occurred. A collided frame must be transmitted again later. No er-
rors other than those generated by collisions occur.

4, Continuous or Slotted Time. Time may be assumed continuous, in
which case frame transmission can begin at any instant. Alterna-
tively, time may be slotted or divided into discrete intervals (called
slots). Frame transmissions must then begin at the start of a slot. A
slot may contain 0, 1, or more frames, corresponding to an idle slot, a
successful transmission, or a collision, respectively.

5. Carrier Sense or No Carrier Sense. With the carrier sense as-
sumption, stations can tell if the channel is in use before trying to use
it. No station will attempt to use the channel while it is sensed as
busy. If there is no carrier sense, stations cannot sense the channel
before trying to use it. They just go ahead and transmit. Only later
can they determine whether the transmission was successful.

Some discussion of these assumptions is in order. The first one says that
frame arrivals are independent, both across stations and at a particular station, and
that frames are generated unpredictably but at a constant rate. Actually, this as-
sumption is not a particularly good model of network traffic, as it is well known
that packets come in bursts over a range of time scales (Paxson and Floyd, 1995;
and Leland et al., 1994). Nonetheless, Poisson models, as they are frequently
called, are useful because they are mathematically tractable. They help us analyze

Scanned with CamScanner

protocols to understand roughly how performance changes over an operating
range and how it compares with other designs.

The single-channel assumption is the heart of the model. No external ways to
communicate exist. Stations cannot raise their hands to request that the teacher
call on them, so we will have to come up with better solutions.

The remaining three assumptions depend on the engineering of the system,
and we will say which assumptions hold when we examine a particular protocol.

The collision assumption is basic. Stations need some way to detect collisions
if they are to retramsmit frames rather than let them be lost. For wired chamnels,
node hardware can be designed to detect collisions when they occur. The stations
can then terminate their transmissions prematurely to avoid wasting capacity.
This detection is much harder for wireless channels, so collisions are usually
inferred after the fact by the lack of an expected acknowledgement frame. It is
also possible for some frames involved in a collision to be successfully received,
depending on the details of the signals and the receiving hardware. However, this
situation is not the common case, so we will assume that all frames involved in a
collision are lost. We will also see protocols that are designed to prevent collis-
ions from occurring in the first place.

The reason for the two alternative assumptions about time is that slotted time
can be used to improve performance. However, it requires the stations to follow a
master clock or synchronize their actions with each other to divide time into dis-
crete intervals. Hence, it is not always available. We will discuss and analyze
systems with both kinds of time. For a given system, only one of them holds.

Similarly, a network may have carrier sensing or not have it. Wired networks
will generally have carrier sense. Wireless networks cannot always use it ef-
fectively because not every station may be within radio range of every other sta-
tion. Similarly, carrier sense will mot be available in other settings im which a sta-
tion cannot communicate directly with other stations, for example a cable modem
in which stations must communicate via the cable headend. Note that the word
“carrier’’ in this sense refers to a signal on the channel and has nothing to do with
the common carriers (e.g., telephone companies) that date back to the days of the
Pony Express.

To avoid any misunderstanding, it is worth noting that no multiaccess proto-
col guarantees reliable delivery. Even in the absence of collisions, the receiver
may have copied some of the frame incorrectly for various reasons. Other parts of
the link layer or higher layers provide reliability.

4.2 MULTIPLE ACCESS PROTOCOLS

Many algorithms for allocating a multiple access channel are known. In the
following sections, we will study a small sample of the more interesting ones and
give some examples of how they are commonly used in practice.

Scanned with CamScanner

4.2.1 ALOHA

The story of our first MAC starts out in pristine Hawaii in the early 1970s. In
this case, “pristine’’ can be interpreted as ‘“not having a working telephone sys-
tem.”” This did not make life more pleasant for researcher Norman Abramson and
his colleagues at the University of Hawaii who were trying to connect users on re-
mote islands to the main computer in Honolulu. Stringing their own cables under
the Pacific Ocean was not in the cards, so they looked for a different solution.

The one they found used short-range radios, with each user terminal sharing
the same upstream frequency to send frames to the central computer. It included a
simple and elegant method to solve the chamnel allocation problem. Their work
has been extended by many researchers since then (Schwartz and Abramson,
2009). Although Abramson’s work, called the ALOHA system, used ground-
based radio broadcasting, the basic idea is applicable to any system in which
uncoordinated users are competing for the use of a single shared channel.

We will discuss two versions of ALOHA here: pure and slotted. They differ
with respect to whether time is continuous, as in the pure version, or divided into
discrete slots into which all frames must fit.

Pure ALOHA

The basic idea of an ALOHA system is simple: let users transmit whenever
they have data to be sent. There will be collisions, of course, and the colliding
frames will be damaged. Senders need some way to find out if this is the case. In
the ALOHA system, after each station has sent its frame to the central computer,
this computer rebroadcasts the frame to all of the stations. A sending station can
thus listen for the broadcast from the hub to see if its frame has gotten through. In
other systems, such as wired LANs, the sender might be able to listen for collis-
ions while transmitting.

If the frame was destroyed, the sender just waits a random amount of time and
sends it again. The waiting time must be random or the same frames will collide
over and over, in lockstep. Systems in which multiple users share a common
channel in a way that can lead to conflicts are known as contention systems.

A sketch of frame generation in an ALOHA system is given in Fig. 4-1. We
have made the frames all the same length because the throughput of ALOHA sys-
tems is maximized by having a uniform frame size rather than by allowing vari-
able-length frames.

Whenever two frames try to occupy the channel at the same time, there will
be a collision (as seen in Fig. 4-1) and both will be garbled. If the first bit of a
new frame overlaps with just the last bit of a frame that has almost finished, both
frames will be totally destroyed (i.e., have incorrect checksums) and both will
have to be retransmitted later. The checksum does not (and should not) distin-
guish between a total loss and a near miss. Bad is bad.

Scanned with CamScanner

User

|

[

Collision =—+ Time — r-—\-i_—gollision

Figure 4-1. In pure ALOHA, frames are transmitted at completely arbitrary times.

An interesting question is: what is the efficiency of an ALOHA channel? In
other words, what fraction of all transmitted frames escape collisions under these
chaotic circumstamnces? Let us first consider an infinite collection of users typing
at their termsnals (stations). A user is always in one of two states: typing or wait-
ing. Initially, all users are in the typing state. When a line is finished, the user
stops typing, waiting for a response. The station then transmits a frame con-
taining the line over the shared channel to the central computer and checks the
channel to see if it was successful. If so, the user sees the reply and goes back to
typing. If not, the user continues to wait while the station retransmits the frame
over and over until it has been successfully sent.

Let the “frame time” denote the amount of time needed to transmit the stan-
dard, fixed-length frame (i.e., the frame length divided by the bit rate). At this
point, we assume that the new frames generated by the stations are well modeled
by a Poisson distribution with a mean of N frames per frame time. (The infinite-
populatiom assumption is needed to ensure that N does not decrease as users be-
come blocked.) If N > 1, the user community is generating frames at a higher
rate than the channel can handle, and nearly every frame will suffer a collision.
For reasonable throughput, we would expect 0 < N < 1.

In addition to the new frames, the stations also generate retransmissions of
frames that previously suffered collisions. Let us further assume that the old and
new frames combined are well modeled by a Poisson distribution, with mean of G
frames per frame time. Clearly, G 2N. At low load (i.e., N = 0), there will be
few collisions, hence few retransmissions, so G = N. At high load, there will be
many collisions, so G > N. Under all loads, the throughput, §, is just the offered
load, G, times the probability, Py, of a transmission succeeding—that 1is,
S =GPy, where Py is the probability that a frame does not suffer a collision.

A frame will not suffer a collision if no other frames are sent within one
frame time of its start, as shown in Fig. 4-2. Under what conditions will the

Scanned with CamScanner

shaded frame arrive undamaged? Let be the time required to send one frame. If
any other user has generated a frame between time t¢ and tg + ¢, the end of that
frame will collide with the beginning of the shaded one. In fact, the shaded
frame's fate was already sealed even before the first bit was sent, but since in pure
ALQHA a station does not listen to the channel before transmitting, it has no way
of knowing that another frame was already underway. Similarly, any other frame
started between t(+ ¢ and t + 2t will bump into the end of the shaded frame.

I
I
|
I
I
I
I
I
|
I
I
I
I Collides with Collides with
I
|
I
I
I
I
I
I
I
I
I
1

the start of | ! the end of
the shaded | i ! the shaded
frame } : frame
| I
| |
| |
| I
1o to+ 1 to+ 2t tg+ 3t Time ——

|*— Vulnerable —'*l

Figure 4-2. Vulnerable period for the shaded frame.

The probability that k¥ frames are generated during a given frame time, in
which G frames are expected, is given by the Poisson distribution

Prik]= ——— (4-2)

so the probability of zero frames is just ¢~C. In an interval two frame times long,
the mean number of frames generated is 2G. The probability of no frames being
initiated during the entire vulnerable period is thus given by Py =e~2¢. Using
S =GPy, we get
S =Ge™C

The relation between the offered traffic and the throughput is shown in
Fig. 4-3. The maximum throughput occurs at G =0.5, with § = 1/2¢, which is
about 0.184. In other words, the best we can hope for is a channel utilization of
18%. This result is not very encouraging, but with everyone transmitting at will,
we could hardly have expected a 100% success rate.

Stotted ALOHA
Soon after ALOHA came onto the scene, Roberts (1972) published a method

for doubling the capacity of an ALOHA system. His proposal was to divide time
into discrete intervals called slots, each interval corresponding to one frame. This

Scanned with CamScanner

)
E
@ -
E 0401 : Slotted ALOHA: S = Ge™8
- |
= 0.30 - :
- |
2 o020-__/_ :
i |)
()] |
3 010 |- I | Pure ALOHA: S = Ge™2@
£ i |
— 1] I I
w 1 1
0 0.5 1.0 1.5 2.0 3.0

G (attempts per packet time)

Figure 4-3. Throughput versus offered traffic for ALOHA systems.

approach requires the users to agree on slot boundaries. One way to achieve syn-
chronization would be to have one special station emit a pip at the start of each in-
terval, like a clock.

In Roberts’ method, which has come to be known as slotted ALOHA—in
contrast to Abramson’s pure ALOHA—a station is not permitted to send when-
ever the user types a line. Instead, it is required to wait for the beginning of the
next slot. Thus, the continuous time ALLOHA is turned into a discrete time one.
This halves the vulnerable period. To see this, look at Fig. 4-3 and imagine the
collisions that are now possible. The probability of no other traffic during the
same slot as our test frame is then e"G, which leads to

§S=Ge™C (4-3)

As you can see from Fig. 4-3, slotted ALOHA peaks at G = 1, with a throughput
of § = 1/e or about 0.368, twice that of pure ALOHA. If the system is operating
at G =1, the probability of an empty slot is 0.368 (from Eq. 4-2). The best we
can hope for using slotted ALOHA is 37% of the slots empty, 37% successes, and
26% collisions. Operating at higher values of G reduces the number of empties
but increases the number of collisions exponentially. To see how this rapid
growth of collisions with G comes about, consider the transmission of a test
frame. The probability that it will avoid a collision is e~¢, which is the probabil-
ity that all the other stations are silent in that slot. The probability of a collision is
then just 1 —e~C. The probability of a transmission requiring exactly k attempts
(i.e., k — 1 collisions followed by one success) is

Pk - e_G(l _ e—G)k—l

The expected number of transmissions, E, per line typed at a terminal is then

E=YkP, = The C(1-eC)1 = €
k=1 k=1

Scanned with CamScanner

As a result of the exponential dependence of E upon G, small increases in the
channel load can drastically reduce its performance.

Slotted ALOHA is notable for a reason that may not be initially obvious. It
was devised in the 1970s, used in a few early experimental systems, then almost
forgotten. When Internet access over the cable was invented, all of a sudden there
was a problem of how to allocate a shared channel among multiple competing
users. Slotted ALOHA was pulled out of the garbage cam to save the day. Later,
having multiple RFID tags talk to the same RFID reader presented another varia-
tion on the same problem. Slotted ALOHA, with a dash of other ideas mixed in,
again came to the rescue. It has often happened that protocols that are perfectly
valid fall into disuse for political reasons (e.g., some big company wants everyone
to do things its way) or due to ever-changing technology trends. Then, years later
some clever person realizes that a long-discarded protocol solves his current prob-
lem. For this reason, in this chapter we will study a number of elegant protocols
that are not currently in widespread use but might easily be used in future applica-
tions, provided that enough network designers are aware of them. Of course, we
will also study many protocols that are in current use as well.

Scanned with CamScanner

