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blasts the data at the poor helpless phone until it is completely swamped. Even if
the transmission is error free, the receiver may be unable to handle the frames as
fast as they arrive and will lose some.

Clearly, something has to be done to prevent this situation. Two approaches
are commonly used. In the first one, feedback-based flow control, the receiver
sends back information to the sender giving it permission to send more data, or at
least telling the sender how the receiver is doing. In the second one, rate-based
flow control, the protocol has a built-in mechanism that limits the rate at which
senders may transmit data, without using feedback from the receiver.

In this chapter we will study feedback-based flow control schemes, primarily
because rate-based schemes are only seen as part of the transport layer (Chap. 5).
Feedback-based schemes are seen at both the link layer and higher layers. The
latter is more common these days, in which case the link layer hardware is de-
signed to run fast enough that it does not cause loss. For example, hardware im-
plementations of the link layer as NICs (Network Interface Cards) are some-
times said to run at “‘wire speed,” meaning that they can handle frames as fast as
they can arrive on the link. Any overruns are then not a link problem, so they are
handled by higher layers.

Various feedback-based flow control schemes are known, but most of them
use the same basic principle. The protocol contains well-defined rules about
when a sender may transmit the next frame. These rules often prohibit frames
from being sent until the receiver has granted permission, either implicitly or ex-
plicitly. For example, when a connection is set up the receiver might say: “You
may send me n frames now, but after they have been sent, do not send any more
until I have told you to continue.” We will examine the details shortly.

3.2 ERROR DETECTION AND CORRECTION

We saw in Chap. 2 that communication channels have a range of charac-
teristics. Some channels, like optical fiber in telecommunications networks, have
tiny error rates so that transmission errors are a rare occurrence. But other chan-
nels, especially wireless links and aging local loops, have error rates that are ord-
ers of magnitude larger. For these links, transmission errors are the norm. They
cannot be avoided at a reasonable expense or cost in terms of performance. The
conclusion is that transmission errors are here to stay. We have to learn how to
deal with them.

Network designers have developed two basic strategies for dealing with er-
rors. Both add redundant information to the data that is sent. One strategy is to
include enough redundant information to enable the receiver to deduce what the
transmitted data must have been. The other is to include only enough redundancy
to allow the receiver to deduce that an error has occurred (but not which error)
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and have it request a retransmission. The former strategy uses error-correcting
codes and the latter uses error-detecting codes. The use of error-correcting
codes 1s often referred to as FEC (Forward Error Correction).

Each of these techniques occupies a different ecological niche. On channels
that are highly reliable, such as fiber, it is cheaper to use an error-detecting code
and just retransmit the occasional block found to be faulty. However, on channels
such as wireless links that make many errors, it is better to add redundancy to
each block so that the receiver is able to figure out what the originally transmitted
block was. FEC is used on noisy channels because retransmissions are just as
likely to be in error as the first transmission.

A key consideration for these codes is the type of errors that are likely to oc-
cur. Neither error-correcting codes nor error-detecting codes can handle all pos-
sible errors since the redundant bits that offer protection are as likely to be re-
ceived in error as the data bits (which can compromise their protection). It would
be nice if the channel treated redundant bits differently than data bits, but it does
not. They are all just bits to the channel. This means that to avoid undetected er-
rors the code must be strong enough to handle the expected errors.

One model is that errors are caused by extreme values of thermal noise that
overwhelm the signal briefly and occasionally, giving rise to isolated single-bit er-
rors. Another model is that errors tend to come in bursts rather than singly. This
model follows from the physical processes that generate them—such as a deep
fade on a wireless channel or transient electrical interference on a wired channel/

Both models matter in practice, and they have different trade-offs. Having the
errors come in bursts has both advantages and disadvantages over isolated single-
bit errors. On the advantage side, computer data are always sent in blocks of bits.
Suppose that the block size was 1000 bits and the error rate was 0.001 per bit. If
errors were independent, most blocks would contain an error. If the errors came
in bursts of 100, however, only one block in 100 would be affected, on average.
The disadvantage of burst errors is that when they do occur they are much harder
to correct than isolated errors.

Other types of errors also exist. Sometimes, the location of an error will be
known, perhaps because the physical layer received an analog signal that was far
from the expected value for a 0 or 1 and declared the bit to be lost. This situation
1s called an erasure channel. It is easier to correct errors in erasure channels than
in channels that flip bits because even if the value of the bit has been lost, at least
we know which bit 1s in error. However, we often do not have the benefit of eras-
ures.

We will examine both error-correcting codes and error-detecting codes next.
Please keep two points in mind, though. First, we cover these codes in the link
layer because this is the first place that we have run up against the problem of reli-
ably transmitting groups of bits. However, the codes are widely used because
reliability 1s an overall concern. Error-correcting codes are also seen in the physi-
cal layer, particularly for noisy channels, and in higher layers, particularly for
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real-time media and content distribution. Error-detecting codes are commonly
used in link, network, and transport layers.

The second point to bear in mind is that error codes are applied mathematics.
Unless you are particularly adept at Galois fields or the properties of sparse
matrices, you should get codes with good properties from a reliable source rather
than making up your own. In fact, this is what many protocol standards do, with
the same codes coming up again and again. In the material below, we will study a
simple code in detail and then briefly describe advanced codes. In this way, we
can understand the trade-offs from the simple code and talk about the codes that
are used in practice via the advanced codes.

3.2.1 Error-Correcting Codes

We will examine four different error-correcting codes:
1. Hamming codes.
Binary convolutional codes.

Reed-Solomon codes.

# W3 b

Low-Density Parity Check codes.

All of these codes add redundancy to the information that is sent. A frame con-
sists of m data (i.e., message) bits and r redundant (i.e. check) bits. In a block
code, the r check bits are computed solely as a function of the m data bits with
which they are associated, as though the m bits were looked up in a large table to
find their corresponding r check bits. In a systematic code, the m data bits are
sent directly, along with the check bits, rather than being encoded themselves be-
fore they are sent. In a linear code, the r check bits are computed as a linear
function of the m data bits. Exclusive OR (XOR) or modulo 2 addition 1s a popu-
lar choice. This means that encoding can be done with operations such as matrix
multiplications or simple logic circuits. The codes we will look at in this section
are linear, systematic block codes unless otherwise noted.

Let the total length of a block be n (i.e., n =m + r). We will describe this as
an (n,m) code. An n-bit unit containing data and check bits is referred to as an n-
bit codeword. The code rate, or simply rate, is the fraction of the codeword that
carries information that is not redundant, or m/n. The rates used in practice vary
widely. They might be 1/2 for a noisy channel, in which case half of the received
information is redundant, or close to 1 for a high-quality channel, with only a
small number of check bits added to a large message.

To understand how errors can be handled, it is necessary to first look closely
at what an error really is. Given any two codewords that may be transmitted or
received—say, 10001001 and 10110001—it is possible to determine how many
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corresponding bits differ. In this case, 3 bits differ. To determine how many bits
differ, just XOR the two codewords and count the number of 1 bits in the result.
For example:

10001001
10110001
00111000

The number of bit positions in which two codewords differ is called the Ham-
ming distance (Hamming, 1950). Its significance is that if two codewords are a
Hamming distance d apart, it will require d single-bit errors to convert one into
the other.

Given the algorithm for computing the check bits, it is possible to construct a
complete list of the legal codewords, and from this list to find the two codewords
with the smallest Hamming distance. This distance is the Hamming distance of
the complete code.

In most data transmission applications, all 2™ possible data messages are
legal, but due to the way the check bits are computed, not all of the 2" possible
codewords are used. In fact, when there are r check bits, only the small fraction
of 2" /2" or 1/2" of the possible messages will be legal codewords. It is the
sparseness with which the message 1s embedded in the space of codewords that al-
lows the receiver to detect and correct errors.

The error-detecting and error-correcting properties of a block code depend on
its Hamming distance. To reliably detect d errors, you need a distance d + 1 code
because with such a code there is no way that d single-bit errors can change a
valid codeword into another valid codeword. When the receiver sees an illegal
codeword, it can tell that a transmission error has occurred. Similarly, to correct d
errors, you need a distance 2d + 1 code because that way the legal codewords are
so far apart that even with d changes the original codeword is still closer than any
other codeword. This means the original codeword can be uniquely determined
based on the assumption that a larger number of errors are less likely.

As a simple example of an error-correcting code, consider a code with only
four valid codewords:

0000000000, 0000011111, 1111100000, and 1111111111

This code has a distance of 5, which means that it can correct double errors or
detect quadruple errors. If the codeword 0000000111 arrives and we expect only
single- or double-bit errors, the receiver will know that the original must have
been 0000011111. If, however, a triple error changes 0000000000 into
0000000111, the error will not be corrected properly. Alternatively, if we expect
all of these errors, we can detect them. None of the received codewords are legal
codewords so an error must have occurred. It should be apparent that in this ex-
ample we cannot both correct double errors and detect quadruple errors because
this would require us to interpret a received codeword in two different ways.
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In our example, the task of decoding by finding the legal codeword that is
closest to the received codeword can be done by inspection. Unfortunately, in the
most general case where all codewords need to be evaluated as candidates, this
task can be a time-consuming search. Instead, practical codes are designed so that
they admit shortcuts to find what was likely the original codeword.

Imagine that we want to design a code with m message bits and r check bits
that will allow all single errors to be corrected. Each of the 2™ legal messages has
n illegal codewords at a distance of 1 from it. These are formed by systematically
inverting each of the n bits in the n-bit codeword formed from it. Thus, each of
the 2™ legal messages requires n + 1 bit patterns dedicated to it. Since the total
number of bit patterns is 2", we must have (n + 1)2" <2". Using n =m + r, this
requirement becomes

m+r+1)<2 (3-1)

Given m, this puts a lower limit on the number of check bits needed to correct sin-
gle errors.

This theoretical lower limit can, in fact, be achieved using a method due to
Hamming (1950). In Hamming codes the bits of the codeword are numbered
consecutively, starting with bit 1 at the left end, bit 2 to its immediate right, and so
on. The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits. The rest (3,
5,6,7,9, etc.) are filled up with the m data bits. This pattern is shown for an
(11,7) Hamming code with 7 data bits and 4 check bits in Fig. 3-6. Each check bit
forces the modulo 2 sum, or parity, of some collection of bits, including itself, to
be even (or odd). A bit may be included in several check bit computations. To
see which check bits the data bit in position k contributes to, rewrite k as a sum of
powers of 2. For example, 11 =1+ 2+ 8and 29=1+4 + 8 + 16. A bitis
checked by just those check bits occurring in its expansion (e.g., bit 11 is checked
by bits 1, 2, and 8). In the example, the check bits are computed for even parity
sums for a message that is the ASCII letter “A.”

Check Syndrome )
bits 0101 Flip
bit 5
~__ Check
m 1 bit results
error
A Po Mg Py M5 MgMy Pg Mg Mqg My, A
1{](}0001—"{]{11{]{}{]010{]1 —-—001{1"001[)01—-1000001
\ | ) Channel | ' )
Message Sent Received Message
codeword codeword

Figure 3-6. Example of an (11, 7) Hamming code correcting a single-bit error.

This construction gives a code with a Hamming distance of 3, which means
that it can correct single errors (or detect double errors). The reason for the very
careful numbering of message and check bits becomes apparent in the decoding
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process. When a codeword arrives, the receiver redoes the check bit computa-
tions including the values of the received check bits. We call these the check re-
sults. If the check bits are correct then, for even parity sums, each check result
should be zero. In this case the codeword is accepted as valid.

If the check results are not all zero, however, an error has been detected. The
set of check results forms the error syndrome that is used to pinpoint and correct
the error. In Fig. 3-6, a single-bit error occurred on the channel so the check re-
sults are 0, 1, 0, and 1 for k = 8, 4, 2, and 1, respectively. This gives a syndrome
of 0101 or 4 + 1=5. By the design of the scheme, this means that the fifth bit is in
error. Flipping the incorrect bit (which might be a check bit or a data bit) and dis-
carding the check bits gives the correct message of an ASCII “A.”

Hamming distances are valuable for understanding block codes, and Ham-
ming codes are used in error-correcting memory. However, most networks use
stronger codes. The second code we will look at is a convolutional code. This
code is the only one we will cover that is not a block code. In a convolutional
code, an encoder processes a sequence of input bits and generates a sequence of
output bits. There is no natural message size or encoding boundary as in a block
code. The output depends on the current and previous input bits. That is, the
encoder has memory. The number of previous bits on which the output depends is
called the constraint length of the code. Convolutional codes are specified in
terms of their rate and constraint length.

Convolutional codes are widely used in deployed networks, for example, as
part of the GSM mobile phone system, in satellite communications, and in 802.11.
As an example, a popular convolutional code is shown in Fig. 3-7. This code is
known as the NASA convolutional code of r =1/2 and k =7, since 1t was first
used for the Voyager space missions starting in 1977. Since then it has been
liberally reused, for example, as part of 802.11.

Figure 3-7. The NASA binary convolutional code used in 802.11.

In Fig. 3-7, each input bit on the left-hand side produces two output bits on the
right-hand side that are XOR sums of the input and internal state. Since it deals
with bits and performs linear operations, this is a binary, linear convolutional
code. Since 1 input bit produces 2 output bits, the code rate is 1/2. It is not sys-
tematic since none of the output bits is simply the input bit.
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The internal state is kept in six memory registers. Each time another bit is in-
put the values in the registers are shifted to the right. For example, if 111 is input
and the initial state is all zeros, the internal state, written left to right, will become
100000, 110000, and 111000 after the first, second, and third bits have been input.
The output bits will be 11, followed by 10, and then 01. It takes seven shifts to
flush an input completely so that it does not affect the output. The constraint
length of this code is thus k = 7.

A convolutional code is decoded by finding the sequence of input bits that is
most likely to have produced the observed sequence of output bits (which includes
any errors). For small values of k, this is done with a widely used algorithm de-
veloped by Viterbi (Forney, 1973). The algorithm walks the observed sequence,
keeping for each step and for each possible internal state the input sequence that
would have produced the observed sequence with the fewest errors. The input se-
quence requiring the fewest errors at the end is the most likely message.

Convolutional codes have been popular in practice because it is easy to factor
the uncertainty of a bit being a 0 or a 1 into the decoding. For example, suppose
—1V is the logical 0 level and +1V is the logical 1 level, we might receive 0.9V
and —0.1V for 2 bits. Instead of mapping these signals to 1 and 0 right away, we
would like to treat 0.9V as “very likely a 1" and 0.1V as “maybe a 0" and cor-
rect the sequence as a whole. Extensions of the Viterbi algorithm can work with
these uncertainties to provide stronger error correction. This approach of working
with the uncertainty of a bit is called soft-decision decoding. Conversely, decid-
ing whether each bit is a 0 or a 1 before subsequent error correction is called
hard-decision decoding.

The third kind of error-correcting code we will describe is the Reed-Solomon
code. Like Hamming codes, Reed-Solomon codes are linear block codes, and
they are often systematic too. Unlike Hamming codes, which operate on individ-
ual bits, Reed-Solomon codes operate on m bit symbols. Naturally, the mathemat-
ics are more involved, so we will describe their operation by analogy.

Reed-Solomon codes are based on the fact that every n degree polynomial is
uniquely determined by n + 1 points. For example, a line having the form ax + b
is determined by two points. Extra points on the same line are redundant, which is
helpful for error correction. Imagine that we have two data points that represent a
line and we send those two data points plus two check points chosen to lie on the
same line. If one of the points is received in error, we can still recover the data
points by fitting a line to the received points. Three of the points will lie on the
line, and one point, the one in error, will not. By finding the line we have cor-
rected the error.

Reed-Solomon codes are actually defined as polynomials that operate over
finite fields, but they work in a similar manner. For m bit symbols, the codewords
are 2" —1 symbols long. A popular choice is to make m = 8 so that symbols are
bytes. A codeword is then 255 bytes long. The (255, 233) code is widely used; it
adds 32 redundant symbols to 233 data symbols. Decoding with error correction
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is done with an algorithm developed by Berlekamp and Massey that can effi-
ciently perform the fitting task for moderate-length codes (Massey, 1969).

Reed-Solomon codes are widely used in practice because of their strong
error-correction properties, particularly for burst errors. They are used for DSL,
data over cable, satellite communications, and perhaps most ubiquitously on CDs,
DVDs, and Blu-ray discs. Because they are based on m bit symbols, a single-bit
error and an m-bit burst error are both treated simply as one symbol error. When
2t redundant symbols are added, a Reed-Solomon code is able to correct up to ¢
errors in any of the transmitted symbols. This means, for example, that the (255,
233) code, which has 32 redundant symbols, can correct up to 16 symbol errors.
Since the symbols may be consecutive and they are each 8 bits, an error burst of
up to 128 bits can be corrected. The situation is even better if the error model is
one of erasures (e.g., a scratch on a CD that obliterates some symbols). In this
case, up to 2t errors can be corrected.

Reed-Solomon codes are often used in combination with other codes such as a
convolutional code. The thinking is as follows. Convolutional codes are effective
at handling isolated bit errors, but they will fail, likely with a burst of errors, if
there are too many errors in the received bit stream. By adding a Reed-Solomon
code within the convolutional code, the Reed-Solomon decoding can mop up the
error bursts, a task at which it is very good. The overall code then provides good
protection against both single and burst errors.

The final error-correcting code we will cover is the LDPC (Low-Density
Parity Check) code. LDPC codes are linear block codes that were invented by
Robert Gallagher in his doctoral thesis (Gallagher, 1962). Like most theses, they
were promptly forgotten, only to be reinvented in 1995 when advances in comput-
ing power had made them practical.

In an LDPC code, each output bit is formed from only a fraction of the input
bits. This leads to a matrix representation of the code that has a low density of 1s,
hence the name for the code. The received codewords are decoded with an
approximation algorithm that iteratively improves on a best fit of the received
data to a legal codeword. This corrects errors.

LDPC codes are practical for large block sizes and have excellent error-cor-
rection abilities that outperform many other codes (including the ones we have
looked at) in practice. For this reason they are rapidly being included in new pro-
tocols. They are part of the standard for digital video broadcasting, 10 Gbps
Ethernet, power-line networks, and the latest version of 802.11. Expect to see
more of them in future networks.

3.2.2 Error-Detecting Codes
Error-correcting codes are widely used on wireless links, which are notori-

ously noisy and error prone when compared to optical fibers. Without error-cor-
recting codes, it would be hard to get anything through. However, over fiber or
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high-quality copper, the error rate is much lower, so error detection and retrans-
mission is usually more efficient there for dealing with the occasional error.

We will examine three different error-detecting codes. They are all linear,
systematic block codes:

1. Parity.
2. Checksums.
3. Cyclic Redundancy Checks (CRCs).

To see how they can be more efficient than error-correcting codes, consider
the first error-detecting code, in which a single parity bit is appended to the data.
The parity bit is chosen so that the number of 1 bits in the codeword is even (or
odd). Doing this is equivalent to computing the (even) parity bit as the modulo 2
sum or XOR of the data bits. For example, when 1011010 is sent in even parity, a
bit is added to the end to make it 10110100. With odd parity 1011010 becomes
10110101. A code with a single parity bit has a distance of 2, since any single-bit
error produces a codeword with the wrong parity. This means that it can detect
single-bit errors.

Consider a channel on which errors are isolated and the error rate is 107° per
bit. This may seem a tiny error rate, but it is at best a fair rate for a long wired
cable that is challenging for error detection. Typical LAN links provide bit error
rates of 107" Let the block size be 1000 bits. To provide error correction for
1000-bit blocks, we know from Eq. (3-1) that 10 check bits are needed. Thus, a
megabit of data would require 10,000 check bits. To merely detect a block with a
single 1-bit error, one parity bit per block will suffice. Once every 1000 blocks, a
block will be found to be in error and an extra block (1001 bits) will have to be
transmitted to repair the error. The total overhead for the error detection and re-
transmission method is only 2001 bits per megabit of data, versus 10,000 bits for a
Hamming code.

One difficulty with this scheme is that a single parity bit can only reliably
detect a single-bit error in the block. If the block is badly garbled by a long burst
error, the probability that the error will be detected is only 0.5, which is hardly ac-
ceptable. The odds can be improved considerably if each block to be sent is
regarded as a rectangular matrix n bits wide and k bits high. Now, if we compute
and send one parity bit for each row, up to k bit errors will be reliably detected as
long as there is at most one error per row.

However, there is something else we can do that provides better protection
against burst errors: we can compute the parity bits over the data in a different
order than the order in which the data bits are transmitted. Doing so is called
interleaving. In this case, we will compute a parity bit for each of the n columns
and send all the data bits as k rows, sending the rows from top to bottom and the
bits in each row from left to right in the usual manner. At the last row, we send
the n parity bits. This transmission order is shown in Fig. 3-8 forn =7 and k = 7.

Scanned with CamScanner



SEC.. 32 ERROR DETECTION AND CORRECTION 211

— Transmit

N 1001110 order N 1001110 Biirit

e 1100101 c 1100011~ —> e:'rfr

t 1110100 | {ioiiio0

w 1110111 w 1110111

o 1101111 Channe'; o 1101111

r 1110010 r 1110010

k 1101011 k 1101011
\AARAAAI \AAAARA]
1011110 10i11db
R N7
Parity bits Parity errors

Figure 3-8. Interleaving of parity bits to detect a burst error.

Interleaving is a general technique to convert a code that detects (or corrects)
isolated errors into a code that detects (or corrects) burst errors. In Fig. 3-8, when
a burst error of length n =7 occurs, the bits that are in error are spread across dif-
ferent columns. (A burst error does not imply that all the bits are wrong; it just
implies that at least the first and last are wrong. In Fig. 3-8, 4 bits were flipped
over a range of 7 bits.) At most 1 bit in each of the n columns will be affected, so
the parity bits on those columns will detect the error. This method uses n parity
bits on blocks of kn data bits to detect a single burst error of length n or less.

A burst of length n +1 will pass undetected, however, if the first bit is
inverted, the last bit 1s inverted, and all the other bits are correct. If the block is
badly garbled by a long burst or by multiple shorter bursts, the probability that any
of the n columns will have the correct parity by accident is 0.5, so the probability
of a bad block being accepted when it should not be is 27",

The second kind of error-detecting code, the checksum, is closely related to
groups of parity bits. The word “checksum’ is often used to mean a group of
check bits associated with a message, regardless of how are calculated. A group
of parity bits is one example of a checksum. However, there are other, stronger
checksums based on a running sum of the data bits of the message. The checksum
is usually placed at the end of the message, as the complement of the sum func-
tion. This way, errors may be detected by summing the entire received codeword,
both data bits and checksum. If the result comes out to be zero, no error has been
detected.

One example of a checksum is the 16-bit Internet checksum used on all Inter-
net packets as part of the IP protocol (Braden et al., 1988). This checksum is a
sum of the message bits divided into 16-bit words. Because this method operates
on words rather than on bits, as in parity, errors that leave the parity unchanged
can still alter the sum and be detected. For example, if the lowest order bit in two
different words is flipped from a () to a 1, a parity check across these bits would
fail to detect an error. However, two 1s will be added to the 16-bit checksum to
produce a different result. The error can then be detected.
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The Internet checksum is computed in one’s complement arithmetic instead of
as the modulo 2'® sum. In one’s complement arithmetic, a negative number is the
bitwise complement of its positive counterpart. Modern computers run two’s
complement arithmetic, in which a negative number is the one’s complement plus
one. On a two’s complement computer, the one’s complement sum is equivalent
to taking the sum modulo 2'® and adding any overflow of the high order bits back
into the low-order bits. This algorithm gives a more uniform coverage of the data
by the checksum bits. Otherwise, two high-order bits can be added, overflow, and
be lost without changing the sum. There is another benefit, too. One’s comple-
ment has two representations of zero, all Os and all 1s. This allows one value (e.g.,
all Os) to indicate that there is no checksum, without the need for another field.

For decades, it has always been assumed that frames to be checksummed con-
tain random bits. All analyses of checksum algorithms have been made under this
assumption. Inspection of real data by Partridge et al. (1995) has shown this as-
sumption to be quite wrong. As a consequence, undetected errors are in some
cases much more common than had been previously thought.

The Internet checksum in particular is efficient and simple but provides weak
protection in some cases precisely because it is a simple sum. It does not detect
the deletion or addition of zero data, nor swapping parts of the message, and it
provides weak protection against message splices in which parts of two packets
are put together. These errors may seem very unlikely to occur by random proc-
esses, but they are just the sort of errors that can occur with buggy hardware.

A better choice is Fletcher’s checksum (Fletcher, 1982). It includes a posi-
tional component, adding the product of the data and its position to the running
sum. This provides stronger detection of changes in the position of data.

Although the two preceding schemes may sometimes be adequate at higher
layers, in practice, a third and stronger kind of error-detecting code is in wide-
spread use at the link layer: the CRC (Cyclic Redundancy Check), also known
as a polynomial code. Polynomial codes are based upon treating bit strings as
representations of polynomials with coefficients of 0 and 1 only. A k-bit frame is
regarded as the coefficient list for a polynomial with k terms, ranging from x*~!
tox’. Sucha polynomial is said to be of degree k — 1. The high-order (leftmost)
bit is the coefficient of xj"_l, the next bit is the coefficient of xj"_?‘, and so on.
For example, 110001 has 6 bits and thus represents a six-term polynomial with
coefficients 1,1,0,0,0, and 1: 1x° + 1x* + Ox? + Ox? + Ox' + 1x".

Polynomial arithmetic is done modulo 2, according to the rules of algebraic
field theory. It does not have carries for addition or borrows for subtraction. Both
addition and subtraction are identical to exclusive OR. For example:

10011011 00110011 11110000 01010101
+ 11001010  + 11001101 - 10100110  -10101111
01010001 11111110 01010110 11111010

Long division is carried out in exactly the same way as it is in binary except that
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the subtraction is again done modulo 2. A divisor is said “to go into” a dividend
if the dividend has as many bits as the divisor.

When the polynomial code method is employed, the sender and receiver must
agree upon a generator polynomial, G(x), in advance. Both the high- and low-
order bits of the generator must be 1. To compute the CRC for some frame with
m bits corresponding to the polynomial M(x), the frame must be longer than the
generator polynomial. The idea is to append a CRC to the end of the frame in
such a way that the polynomial represented by the checksummed frame is divisi-
ble by G(x). When the receiver gets the checksummed frame, it tries dividing it
by G(x). If there is a remainder, there has been a transmission error.

The algorithm for computing the CRC is as follows:

1. Let r be the degree of G(x). Append r zero bits to the low-order end
of the frame so it now contains m + r bits and corresponds to the
polynomial x" M (x).

2. Divide the bit string corresponding to G(x) into the bit string corres-
ponding to x"M(x), using modulo 2 division.

3. Subtract the remainder (which is always r or fewer bits) from the bit
string corresponding to x"M (x) using modulo 2 subtraction. The re-

sult is the checksummed frame to be transmitted. Call its polynomial
T(x).

Figure 3-9 illustrates the calculation for a frame 1101011111 using the generator
Gx)=x*+x+1.

It should be clear that T'(x) is divisible (modulo 2) by G(x). In any division
problem, if you diminish the dividend by the remainder, what is left over is divisi-
ble by the divisor. For example, in base 10, if you divide 210,278 by 10,941, the
remainder i1s 2399. If you then subtract 2399 from 210,278, what is left over
(207,879) is divisible by 10,941.

Now let us analyze the power of this method. What kinds of errors will be de-
tected? Imagine that a transmission error occurs, so that instead of the bit string
for T'(x) arriving, T(x) + E(x) arrives. Each 1 bit in E(x) corresponds to a bit that
has been inverted. If there are k 1 bits in E(x), k single-bit errors have occurred.
A single burst error is characterized by an initial 1, a mixture of Os and Is, and a
final 1, with all other bits being 0.

Upon receiving the checksummed frame, the receiver divides it by G(x); that
is, it computes [7(x) + E(x)]/G(x). T(x)/G(x) is 0, so the result of the computa-
tion 1s simply E(x)/G(x). Those errors that happen to correspond to polynomials
containing ((x) as a factor will slip by; all other errors will be caught.

If there has been a single-bit error, E(x) = x', where i determines which bit is
in error. If G(x) contains two or more terms, it will never divide into E(x), so all
single-bit errors will be detected.
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Frame: 1101011111
Generator: 1 0 0 1 1
1 0 =— Quotient (thrown away)
0 0 =— Frame with four zeros appended
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Transmittedframe: 1 1 01 011111001 0-=— Frame with four zeros appended

minus remainder

Figure 3-9. Example calculation of the CRC.

If there have been two isolated single-bit errors, E(x) = x'+x/, where i > J.
Alternatively, this can be written as E(x) = xJ (x"_Ji + 1). If we assume that G(x)
1s not divisible by x, a sufficient condition for all double errors to be detected is
that G(x) does not divide xX+1 for any k up to the maximum value of i —j (1.e.,
up to the maximum frame length). Simple, low-degree polynomials that give pro-
tection to long frames are known. For example, xB +x™ 41 will not divide
x¥ + 1 for any value of k below 32,768.

If there are an odd number of bits in error, E(X) contains an odd number of
terms (e.g., x> +x2 + 1, but not x2 + 1). Interestingly, no polynomial with an odd
number of terms has x + 1 as a factor in the modulo 2 system. By making x + 1 a
factor of G(x), we can catch all errors with an odd number of inverted bits.

Finally, and importantly, a polynomial code with r check bits will detect all
burst errors of length <r. A burst error of length k can be represented by
xi(xk_] +...+ 1), where i determines how far from the right-hand end of the re-
ceived frame the burst is located. If G(x) contains an x° term, it will not have x’
as a factor, so if the degree of the parenthesized expression is less than the degree
of G(x), the remainder can never be zero.
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If the burst length is r + 1, the remainder of the division by G(x) will be zero
if and only if the burst is identical to G(x). By definition of a burst, the first and
last bits must be 1, so whether it matches depends on the r — 1 intermediate bits.
If all combinations are regarded as equall?r likely, the probability of such an incor-
rect frame being accepted as valid is /2"~

It can also be shown that when an error burst longer than » + 1 bits occurs or
when several shorter bursts occur, the probability of a bad frame getting through
unnoticed is %", assuming that all bit patterns are equally likely.

Certain polynomials have become international standards. The one used in
IEEE 802 followed the example of Ethernet and is

X2 x4 xB xR 4516 12 Lol X0 T+ Fxt x4 xl +1

Among other desirable properties, it has the property that it detects all bursts of
length 32 or less and all bursts affecting an odd number of bits. It has been used
widely since the 1980s. However, this does not mean it is the best choice. Using
an exhaustive computational search, Castagnoli et al. (1993) and Koopman (2002)
found the best CRCs. These CRCs have a Hamming distance of 6 for typical
message sizes, while the IEEE standard CRC-32 has a Hamming distance of only
4.

Although the calculation required to compute the CRC may seem complicat-
ed, it 1s easy to compute and verify CRCs in hardware with simple shift register
circuits (Peterson and Brown, 1961). In practice, this hardware is nearly always
used. Dozens of networking standards include various CRCs, including virtually
all LANs (e.g., Ethernet, 802.11) and point-to-point links (e.g., packets over
SONET).

3.3 ELEMENTARY DATA LINK PROTOCOLS

To introduce the subject of protocols, we will begin by looking at three proto-
cols of increasing complexity. For interested readers, a simulator for these and
subsequent protocols is available via the Web (see the preface). Before we look
at the protocols, it is useful to make explicit some of the assumptions underlying
the model of communication.

To start with, we assume that the physical layer, data link layer, and network
layer are independent processes that communicate by passing messages back and
forth. A common implementation is shown in Fig. 3-10. The physical layer proc-
ess and some of the data link layer process run on dedicate hardware called a NIC
(Network Interface Card). The rest of the link layer process and the network
layer process run on the main CPU as part of the operating system, with the soft-
ware for the link layer process often taking the form of a device driver. Howev-
er, other implementations are also possible (e.g., three processes offloaded to ded-
icated hardware called a network accelerator, or three processes running on the

Scanned with CamScanner



