3.3.2 A Simplex Stop-and-Wait Protocol for an Error-Free Channel

Now we will tackle the problem of preventing the sender from flooding the
receiver with frames faster than the latter is able to process them. This situation
can easily happen in practice so being able to prevent it is of great importance.

Scanned with CamScanner



The communication channel is still assumed to be error free, however, and the
data traffic is still simplex.

One solution is to build the receiver to be powerful enough to process a con-
tinuous stream of back-to-back frames (or, equivalently, define the link layer to be
slow enough that the receiver can keep up). It must have sufficient buffering and
processing abilities to run at the line rate and must be able to pass the frames that
are received to the network layer quickly enough. However, this is a worst-case
solution. It requires dedicated hardware and can be wasteful of resources if the
utilization of the link is mostly low. Moreover, it just shifts the problem of deal-
ing with a sender that is too fast elsewhere; in this case to the network layer.

A more general solution to this problem is to have the receiver provide feed-
back to the sender. After having passed a packet to its network layer, the receiver
sends a little dummy frame back to the sender which, in effect, gives the sender
permission to transmit the next frame. After having sent a frame, the sender is re-
quired by the protocol to bide its time until the little dummy (i.c., acknowledge-
ment) frame arrives. This delay is a simple example of a flow control protocol.

Protocols in which the sender sends one frame and then waits for an acknowl-
edgement before proceeding arc called stop-and-wait. Figure 3-13 gives an ex-
ample of a simplex stop-and-wait protocol.

Although data traffic in this example is simplex, going only from the sender to
the receiver, frames do travel in both directions. Consequently, the communica-
tion channel between the two data link layers needs to be capable of bidirectional
information transfer. However, this protocol entails a strict alternation of flow:
first the sender sends a frame, then the receiver sends a frame, then the sender
sends another frame, then the receiver sends another one, and so on. A half-
duplex physical channel would suffice here.

As in protocol 1, the sender starts out by fetching a packet from the network
layer, using it to construct a frame, and sending it on its way. But now, unlike in
protocol 1, the sender must wait until an acknowledgement frame arrives before
looping back and fetching the next packet from the network layer. The sending
data link layer need not even inspect the incoming frame as there is only one pos-
sibility. The incoming frame is always an acknowledgement.

The only difference between receiverl and receiver?2 is that after delivering a
packet to the network layer, receiverZ sends an acknowledgement frame back to
the sender before entering the wait loop again. Because only the arrival of the
frame back at the sender is important, not its contents, the receiver need not put
any particular information 1n it.

3.3.3 A Simplex Stop-and-Wait Protocol for a Noisy Channel
Now let us consider the normal situation of a communication channel that

makes errors. Frames may be either damaged or lost completely. However, we
assume that if a frame is damaged in transit, the receiver hardware will detect this

Scanned with CamScanner



/+ Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from
sender 1o receiver. The communication channel is once again assumed 1o be error
free, as in protocol 1. However, this time the receiver has only a finite buffer
capacity and a finite processing speed, so the protocol must explicitly prevent
the sender from flooding the receiver with data faster than it can be handled. */

typedef enum {frame_arrival} eveni_type;
#include "protocol.h”

void sender2(void)

{
frame s; /* buffer for an outbound frame */
packet buffer, /* bufter for an outbound packet */
event_type event, /% frame_arrival is the only possibility */
while (true) {
from_network_layer(&buffer); /* go get something to send */
s.info = buffer; /» copy it into s for transmission */
to_physical_layer(&s); /* bye-bye fittle frame =/
wait_for_event(&event); /* do not proceed until given the go ahead */
}
}
void receiver2(void)
{
framer, s; /* buffers for frames */
event_type event; /* frame_arrival is the only possibility */
while (true) {
wail_for_event(&event); /* only possibility is frame_arrival */
from_physical_layer(&r); /* go get the inbound frame */
to_network_layer(&r.info); {* pass the data to the network layer =/
to_physical_layer(&s); /* send a dummy frame to awaken sender */
}
}

Fipure 3-13. A simplex stop-and-wait protocol.

when it computes the checksum. If the frame is damaged in such a way that the
checksum is nevertheless correct—an unlikely occurrence—this protocol (and all
other protocols) can fail (i.e., deliver an incorrect packet to the network layer).

At first glance it might seem that a variation of protocol 2 would work: adding
a timer. The sender could send a frame, but the receiver would only send an ac-
knowledgement frame if the data were correctly received. If a damaged frame ar-
rived at the receiver, it would be discarded. After a while the sender would time
out and send the frame again. This process would be repeated until the frame
finally arrived intact.

This scheme has a fatal flaw in it though. Think about the problem and try to
discover what might go wrong before reading further.

Scanned with CamScanner



To see what might go wrong, remember that the goal of the data link layer is
to provide error-free, transparent communication between network layer proc-
esses. The network layer on machine A gives a series of packets to its data ¥nk
layer, which must ensure that an identical series of packets is delivered to the net-
work layer on machine B by its data link layer. In particular, the network layer on
B has no way of knowing that a packet has been lost or duplicated, so the data link
layer must guarantee that no combination of transmission errors, however unlike-
ly, can cause a duplicate packet to be delivered to a network layer.

Consider the following scenario:

1. The network layer on A gives packet 1 to its data link layer. The
packet is correctly received at B and passed to the network layer on
B. B sends an acknowledgement frame back to A.

2, The acknowledgement frame gets lost completely. It just never ar-
rives at ak. Life would be a great deal simpler if the channel man-
gled and lost only data frames and not control frames, but sad to say,
the channel is not very discriminating.

3. The data link layer on A eventually times out. Not having received
an acknowledgement, it (incorrectly) assumes that its data frame was
lost or damaged and sends the frame containing packet 1 again.

4. The duplicate frame also arrives intact at the data link layer on B and
1s unwiltingly passed to the network layer there. If A is sending a file
to B, part of the file will be duplicated (i.e., the copy of the file made
by B will be incorrect and the error will not have been detected). In
other words, the protocol will fail.

Clearly, what is needed 1s some way for the receiver to be able to distinguish
a frame that it is seeing for the first ime from a retransmission. The obvious way
to achieve this is to have the sender put a sequence number in the header of each
frame it sends. Then the receiver can check the sequence number of each arriving
frame to see if it is a new frame or a duplicate to be discarded.

Since the protocol must be correct and the sequence number field in the head-
er is likely to be small to use the link efficiently, the question arises: what is the
minimum number of bits needed for the sequence number? The header might pro-
vide | bit, a few bits, 1 byte, or multiple bytes for a sequence number depending
on the protocol. The important point is that il must carry sequence numbers that
are large enough for the protocol to work correctly, or it is not much of a protocol.

The only ambiguity in this protocol is between a frame, m, and its direct suc-
cessor, m + 1. If frame m is lost or damaged, the receiver will not acknowledge it,
so the sender will keep trying to send it. Once it has been correctly received, the
receiver wi¥ send an acknowledgement to the sender. It is here that the potental

Scanned with CamScanner



trouble crops up. Depending upon whether the acknowledgement frame gets back
to the sender correctly or not, the sender may try to send morm + 1.

At the sender, the event that triggers the transmission of frame m + 1 is the ar-
rival of an acknowledgement for frame m. But this situation implies that m — 1
has been correctly received, and furthermore that its acknowledgement has also
been correctly received by the sender. Otherwise, the sender would not have
begun with m, let alone have been considering m + 1. As a consequence, the only
ambiguity is between a frame and its immediate predecessor or successor, not be-
tween the predecessor and successor themselves.

A 1-bit sequence number (0 or 1) is therefore sufficient. At each instant of
lime, the receiver expects a particular sequence number next. When a frame con-
taining the correct sequence number arrives, it is accepted and passed to the net-
work layer, then acknowledged. Then the expected sequence number is incre-
mented modulo 2 (i.e., 0 becomes 1 and 1 becomes 0). Any arriving frame con-
taining the wrong sequence number is rejected as a duplicate. However, the last
valid acknowledgement is repeated so that the sender can eventually discover that
the frame has been received.

An example of this kind of protocol is shown in Fig. 3-14. Protocols in which
the sender waits for a positive acknowledgement before advancing to the next
data item are often called ARQ (Automatic Repeat reQuest) or PAR (Positive
Acknowledgement with Retransmission). Like protocol 2, this one also trans-
mits data only in one direction.

Protocol 3 differs from its predecessors in that both sender and receiver have a
variable whose value is remembered while the data link layer is in the wait state.
The sender remembers the sequence number of the next frame to send in
next_frame_to_send; the receiver remembers the sequence number of the next
frame expected in frame_expected. Each protocol has a short initialization phase
before entering the infinite loop.

After transmitting a frame, the sender starts the timer running. If it was al-
ready running, it will be reset to allow another full timer interval. The interval
should be chosen to allow enough time for the frame to get to the receiver, for the
receiver to process it in the worst case, and for the acknowledgement frame to
propagate back to the sender. Only when that interval has elapsed is it safe to as-
sume that either the transmitted frame or its acknowledgement has been lost, and
to send a duplicate. If the timeout interval is set too short, the sender will transmit
unnecessary frames. While these extra frames will not affect the correctness of
the protocol, they will hurt performance.

After transmitting a frame and starting the timer, the sender waits for some-
thing exciting to happen. Only three possibilities exist: an acknowledgement
frame arrives undamaged, a damaged acknowledgement frame staggers in, or the
timer expires. If a valid acknowledgement comes in, the sender fetches the next
packet from its network layer and puts it in the buffer, overwriting the previous
packet. It also advances the sequence number. If a damaged frame arrives or the

Scanned with CamScanner



226 THE DATA LINK LAYER CHAP. 3

timer expires, neither the buffer nor the sequence number is changed so that a
duplicate can be sent. In all cases, the contents of the buffer (either the next pack-
et or a duplicate) are then sent.

When a valid frame arrives at the receiver, its sequence number is checked to
see if it is a duplicate. If not, it 1s accepted, passed to the network layer, and an
acknowledgement is generated. Duplicates and damaged frames are not passed to
the network layer, but they do cause the last correctly received frame to be
acknowledged to signal the sender to advance to the next frame or retransmit a
damaged frame.

Scanned with CamScanner



