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Since the benefit of forming an internet is to connect computers across net-
works, we do not want to use too low-level a gateway or we will be unable to
make connections between different kinds of networks. We do not want to use
too high-level a gateway either, or the connection will only work for particular ap-
plications. The level in the middle that is ‘‘just right’’ is often called the network
layer, and a router is a gateway that switches packets at the network layer. We
can now spot an internet by finding a network that has routers.

1.3 NETWORK SOFTWARE

The first computer networks were designed with the hardware as the main
concern and the software as an afterthought. This strategy no longer works. Net-
work software is now highly structured. In the following sections we examine the
software structuring technique in some detail. The approach described here forms
the keystone of the entire book and will occur repeatedly later on.

1.3.1 Protocol Hierarchies

To reduce their design complexity, most networks are organized as a stack of
layers or levels, each one built upon the one below it. The number of layers, the
name of each layer, the contents of each layer, and the function of each layer dif-
fer from network to network. The purpose of each layer is to offer certain ser-
vices to the higher layers while shielding those layers from the details of how the
offered services are actually implemented. In a sense, each layer is a kind of vir-
tual machine, offering certain services to the layer above it.

This concept is actually a familiar one and is used throughout computer sci-
ence, where it is variously known as information hiding, abstract data types, data
encapsulation, and object-oriented programming. The fundamental idea is that a
particular piece of software (or hardware) provides a service to its users but keeps
the details of its internal state and algorithms hidden from them.

When layer n on one machine carries on a conversation with layer n on anoth-
er machine, the rules and conventions used in this conversation are collectively
known as the layer n protocol. Basically, a protocol is an agreement between the
communicating parties on how communication is to proceed. As an analogy,
when a woman is introduced to a man, she may choose to stick out her hand. He,
in turn, may decide to either shake it or kiss it, depending, for example, on wheth-
er she is an American lawyer at a business meeting or a European princess at a
formal ball. Violating the protocol will make communication more difficult, if
not completely impossible.

A five-layer network is illustrated in Fig. 1-13. The entities comprising the
corresponding layers on different machines are called peers. The peers may be
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software processes, hardware devices, or even human beings. In other words, it is
the peers that communicate by using the protocol to talk to each other.
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Figure 1-13. Layers, protocols, and interfaces.

In reality, no data are directly transferred from layer n on one machine to
layer n on another machine. Instead, each layer passes data and control infor-
mation to the layer immediately below it, until the lowest layer is reached. Below
layer 1 is the physical medium through which actual communication occurs. In
Fig. 1-13, virtual communication is shown by dotted lines and physical communi-
cation by solid lines.

Between each pair of adjacent layers is an interface. The interface defines
which primitive operations and services the lower layer makes available to the
upper one. When network designers decide how many layers to include in a net-
work and what each one should do, one of the most important considerations is
defining clean interfaces between the layers. Doing so, in turn, requires that each
layer perform a specific collection of well-understood functions. In addition to
minimizing the amount of information that must be passed between layers, clear-
cut interfaces also make it simpler to replace one layer with a completely different
protocol or implementation (e.g., replacing all the telephone lines by satellite
channels) because all that is required of the new protocol or implementation is
that it offer exactly the same set of services to its upstairs neighbor as the old one
did. It is common that different hosts use different implementations of the same
protocol (often written by different companies). In fact, the protocol itself can
change in some layer without the layers above and below it even noticing.
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A set of layers and protocols is called a network architecture . The specif-
ication of an architecture must contain enough information to allow an imple-
menter to write the program or build the hardware for each layer so that it will
correctly obey the appropriate protocol. Neither the details of the implementation
nor the specification of the interfaces is part of the architecture because these are
hidden away inside the machines and not visible from the outside. It is not even
necessary that the interfaces on all machines in a network be the same, provided
that each machine can correctly use all the protocols. A list of the protocols used
by a certain system, one protocol per layer, is called a protocol stack. Network
architectures, protocol stacks, and the protocols themselves are the principal sub-
jects of this book.

An analogy may help explain the idea of multilayer communication. Imagine
two philosophers (peer processes in layer 3), one of whom speaks Urdu and
English and one of whom speaks Chinese and French. Since they have no com-
mon language, they each engage a translator (peer processes at layer 2), each of
whom in turn contacts a secretary (peer processes in layer 1). Philosopher 1
wishes to convey his affection for oryctolagus cuniculus to his peer. To do so, he
passes a message (in English) across the 2/3 interface to his translator, saying ‘‘I
like rabbits,’’ as illustrated in Fig. 1-14. The translators have agreed on a neutral
language known to both of them, Dutch, so the message is converted to ‘‘Ik vind
konijnen leuk.’’ The choice of the language is the layer 2 protocol and is up to the
layer 2 peer processes.

The translator then gives the message to a secretary for transmission, for ex-
ample, by email (the layer 1 protocol). When the message arrives at the other
secretary, it is passed to the local translator, who translates it into French and
passes it across the 2/3 interface to the second philosopher. Note that each proto-
col is completely independent of the other ones as long as the interfaces are not
changed. The translators can switch from Dutch to, say, Finnish, at will, provided
that they both agree and neither changes his interface with either layer 1 or layer
3. Similarly, the secretaries can switch from email to telephone without disturb-
ing (or even informing) the other layers. Each process may add some information
intended only for its peer. This information is not passed up to the layer above.

Now consider a more technical example: how to provide communication to
the top layer of the five-layer network in Fig. 1-15. A message, M, is produced by
an application process running in layer 5 and given to layer 4 for transmission.
Layer 4 puts a header in front of the message to identify the message and passes
the result to layer 3. The header includes control information, such as addresses,
to allow layer 4 on the destination machine to deliver the message. Other ex-
amples of control information used in some layers are sequence numbers (in case
the lower layer does not preserve message order), sizes, and times.

In many networks, no limit is placed on the size of messages transmitted in
the layer 4 protocol but there is nearly always a limit imposed by the layer 3 pro-
tocol. Consequently, layer 3 must break up the incoming messages into smaller
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Figure 1-14. The philosopher-translator-secretary architecture.

units, packets, prepending a layer 3 header to each packet. In this example, M is
split into two parts, M 1 and M 2, that will be transmitted separately.

Layer 3 decides which of the outgoing lines to use and passes the packets to
layer 2. Layer 2 adds to each piece not only a header but also a trailer, and gives
the resulting unit to layer 1 for physical transmission. At the receiving machine
the message moves upward, from layer to layer, with headers being stripped off as
it progresses. None of the headers for layers below n are passed up to layer n.

The important thing to understand about Fig. 1-15 is the relation between the
virtual and actual communication and the difference between protocols and inter-
faces. The peer processes in layer 4, for example, conceptually think of their
communication as being ‘‘horizontal,’’ using the layer 4 protocol. Each one is
likely to have procedures called something like SendToOtherSide and GetFrom-
OtherSide, even though these procedures actually communicate with lower layers
across the 3/4 interface, and not with the other side.
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Figure 1-15. Example information flow supporting virtual communication in
layer 5.

The peer process abstraction is crucial to all network design. Using it, the
unmanageable task of designing the complete network can be broken into several
smaller, manageable design problems, namely, the design of the individual layers.

Although Sec. 1.3 is called ‘‘Network Software,’’ it is worth pointing out that
the lower layers of a protocol hierarchy are frequently implemented in hardware
or firmware. Nevertheless, complex protocol algorithms are involved, even if
they are embedded (in whole or in part) in hardware.

1.3.2 Design Issues for the Layers

Some of the key design issues that occur in computer networks will come up
in layer after layer. Below, we will briefly mention the more important ones.

Reliability is the design issue of making a network that operates correctly
even though it is made up of a collection of components that are themselves
unreliable. Think about the bits of a packet traveling through the network. There
is a chance that some of these bits will be received damaged (inverted) due to
fluke electrical noise, random wireless signals, hardware flaws, software bugs and
so on. How is it possible that we find and fix these errors?

One mechanism for finding errors in received information uses codes for er-
ror detection. Information that is incorrectly received can then be retransmitted
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until it is received correctly. More powerful codes allow for error correction,
where the correct message is recovered from the possibly incorrect bits that were
originally received. Both of these mechanisms work by adding redundant infor-
mation. They are used at low layers, to protect packets sent over individual links,
and high layers, to check that the right contents were received.

Another reliability issue is finding a working path through a network. Often
there are multiple paths between a source and destination, and in a large network,
there may be some links or routers that are broken. Suppose that the network is
down in Germany. Packets sent from London to Rome via Germany will not get
through, but we could instead send packets from London to Rome via Paris. The
network should automatically make this decision. This topic is called routing.

A second design issue concerns the evolution of the network. Over time, net-
works grow larger and new designs emerge that need to be connected to the exist-
ing network. We have recently seen the key structuring mechanism used to sup-
port change by dividing the overall problem and hiding implementation details:
protocol layering. There are many other strategies as well.

Since there are many computers on the network, every layer needs a mechan-
ism for identifying the senders and receivers that are involved in a particular mes-
sage. This mechanism is called addressing or naming, in the low and high lay-
ers, respectively.

An aspect of growth is that different network technologies often have dif-
ferent limitations. For example, not all communication channels preserve the
order of messages sent on them, leading to solutions that number messages. An-
other example is differences in the maximum size of a message that the networks
can transmit. This leads to mechanisms for disassembling, transmitting, and then
reassembling messages. This overall topic is called internetworking .

When networks get large, new problems arise. Cities can have traffic jams, a
shortage of telephone numbers, and it is easy to get lost. Not many people have
these problems in their own neighborhood, but citywide they may be a big issue.
Designs that continue to work well when the network gets large are said to be
scalable.

A third design issue is resource allocation. Networks provide a service to
hosts from their underlying resources, such as the capacity of transmission lines.
To do this well, they need mechanisms that divide their resources so that one host
does not interfere with another too much.

Many designs share network bandwidth dynamically, according to the short-
term needs of hosts, rather than by giving each host a fixed fraction of the band-
width that it may or may not use. This design is called statistical multiplexing,
meaning sharing based on the statistics of demand. It can be applied at low layers
for a single link, or at high layers for a network or even applications that use the
network.

An allocation problem that occurs at every level is how to keep a fast sender
from swamping a slow receiver with data. Feedback from the receiver to the
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sender is often used. This subject is called flow control. Sometimes the problem
is that the network is oversubscribed because too many computers want to send
too much traffic, and the network cannot deliver it all. This overloading of the
network is called congestion. One strategy is for each computer to reduce its de-
mand when it experiences congestion. It, too, can be used in all layers.

It is interesting to observe that the network has more resources to offer than
simply bandwidth. For uses such as carrying live video, the timeliness of delivery
matters a great deal. Most networks must provide service to applications that want
this real-time delivery at the same time that they provide service to applications
that want high throughput. Quality of service is the name given to mechanisms
that reconcile these competing demands.

The last major design issue is to secure the network by defending it against
different kinds of threats. One of the threats we have mentioned previously is that
of eavesdropping on communications. Mechanisms that provide confidentiality
defend against this threat, and they are used in multiple layers. Mechanisms for
authentication prevent someone from impersonating someone else. They might
be used to tell fake banking Web sites from the real one, or to let the cellular net-
work check that a call is really coming from your phone so that you will pay the
bill. Other mechanisms for integrity prevent surreptitious changes to messages,
such as altering ‘‘debit my account $10’’ to ‘‘debit my account $1000.’’ All of
these designs are based on cryptography, which we shall study in Chap. 8.

1.3.3 Connection-Oriented Versus Connectionless Service

Layers can offer two different types of service to the layers above them: con-
nection-oriented and connectionless. In this section we will look at these two
types and examine the differences between them.

Connection-oriented service is modeled after the telephone system. To talk
to someone, you pick up the phone, dial the number, talk, and then hang up. Simi-
larly, to use a connection-oriented network service, the service user first estab-
lishes a connection, uses the connection, and then releases the connection. The
essential aspect of a connection is that it acts like a tube: the sender pushes objects
(bits) in at one end, and the receiver takes them out at the other end. In most
cases the order is preserved so that the bits arrive in the order they were sent.

In some cases when a connection is established, the sender, receiver, and sub-
net conduct a negotiation about the parameters to be used, such as maximum
message size, quality of service required, and other issues. Typically, one side
makes a proposal and the other side can accept it, reject it, or make a counter-
proposal. A circuit is another name for a connection with associated resources,
such as a fixed bandwidth. This dates from the telephone network in which a cir-
cuit was a path over copper wire that carried a phone conversation.

In contrast to connection-oriented service, connectionless service is modeled
after the postal system. Each message (letter) carries the full destination address,
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and each one is routed through the intermediate nodes inside the system indepen-
dent of all the subsequent messages. There are different names for messages in
different contexts; a packet is a message at the network layer. When the inter-
mediate nodes receive a message in full before sending it on to the next node, this
is called store-and-forward switching. The alternative, in which the onward
transmission of a message at a node starts before it is completely received by the
node, is called cut-through switching. Normally, when two messages are sent to
the same destination, the first one sent will be the first one to arrive. However, it
is possible that the first one sent can be delayed so that the second one arrives
first.

Each kind of service can further be characterized by its reliability. Some ser-
vices are reliable in the sense that they never lose data. Usually, a reliable service
is implemented by having the receiver acknowledge the receipt of each message
so the sender is sure that it arrived. The acknowledgement process introduces
overhead and delays, which are often worth it but are sometimes undesirable.

A typical situation in which a reliable connection-oriented service is appropri-
ate is file transfer. The owner of the file wants to be sure that all the bits arrive
correctly and in the same order they were sent. Very few file transfer customers
would prefer a service that occasionally scrambles or loses a few bits, even if it is
much faster.

Reliable connection-oriented service has two minor variations: message se-
quences and byte streams. In the former variant, the message boundaries are pre-
served. When two 1024-byte messages are sent, they arrive as two distinct 1024-
byte messages, never as one 2048-byte message. In the latter, the connection is
simply a stream of bytes, with no message boundaries. When 2048 bytes arrive at
the receiver, there is no way to tell if they were sent as one 2048-byte message,
two 1024-byte messages, or 2048 1-byte messages. If the pages of a book are sent
over a network to a phototypesetter as separate messages, it might be important to
preserve the message boundaries. On the other hand, to download a DVD movie,
a byte stream from the server to the user’s computer is all that is needed. Mes-
sage boundaries within the movie are not relevant.

For some applications, the transit delays introduced by acknowledgements are
unacceptable. One such application is digitized voice traffic for voice over IP. It
is less disruptive for telephone users to hear a bit of noise on the line from time to
time than to experience a delay waiting for acknowledgements. Similarly, when
transmitting a video conference, having a few pixels wrong is no problem, but
having the image jerk along as the flow stops and starts to correct errors is irritat-
ing.

Not all applications require connections. For example, spammers send elec-
tronic junk-mail to many recipients. The spammer probably does not want to go
to the trouble of setting up and later tearing down a connection to a recipient just
to send them one item. Nor is 100 percent reliable delivery essential, especially if
it costs more. All that is needed is a way to send a single message that has a high
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probability of arrival, but no guarantee. Unreliable (meaning not acknowledged)
connectionless service is often called datagram service, in analogy with telegram
service, which also does not return an acknowledgement to the sender. Despite it
being unreliable, it is the dominant form in most networks for reasons that will
become clear later

In other situations, the convenience of not having to establish a connection to
send one message is desired, but reliability is essential. The acknowledged
datagram service can be provided for these applications. It is like sending a reg-
istered letter and requesting a return receipt. When the receipt comes back, the
sender is absolutely sure that the letter was delivered to the intended party and not
lost along the way. Text messaging on mobile phones is an example.

Still another service is the request-reply service. In this service the sender
transmits a single datagram containing a request; the reply contains the answer.
Request-reply is commonly used to implement communication in the client-server
model: the client issues a request and the server responds to it. For example, a
mobile phone client might send a query to a map server to retrieve the map data
for the current location. Figure 1-16 summarizes the types of services discussed
above.
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Figure 1-16. Six different types of service.

The concept of using unreliable communication may be confusing at first.
After all, why would anyone actually prefer unreliable communication to reliable
communication? First of all, reliable communication (in our sense, that is,
acknowledged) may not be available in a given layer. For example, Ethernet does
not provide reliable communication. Packets can occasionally be damaged in
transit. It is up to higher protocol levels to recover from this problem. In particu-
lar, many reliable services are built on top of an unreliable datagram service. Sec-
ond, the delays inherent in providing a reliable service may be unacceptable, espe-
cially in real-time applications such as multimedia. For these reasons, both reli-
able and unreliable communication coexist.
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1.3.4 Service Primitives

A service is formally specified by a set of primitives (operations) available to
user processes to access the service. These primitives tell the service to perform
some action or report on an action taken by a peer entity. If the protocol stack is
located in the operating system, as it often is, the primitives are normally system
calls. These calls cause a trap to kernel mode, which then turns control of the ma-
chine over to the operating system to send the necessary packets.

The set of primitives available depends on the nature of the service being pro-
vided. The primitives for connection-oriented service are different from those of
connectionless service. As a minimal example of the service primitives that
might provide a reliable byte stream, consider the primitives listed in Fig. 1-17.
They will be familiar to fans of the Berkeley socket interface, as the primitives are
a simplified version of that interface.

Primitive Meaning

LISTEN Block waiting for an incoming connection

CONNECT Establish a connection with a waiting peer

ACCEPT Accept an incoming connection from a peer

RECEIVE Block waiting for an incoming message

SEND Send a message to the peer

DISCONNECT Terminate a connection

Figure 1-17. Six service primitives that provide a simple connection-oriented
service.

These primitives might be used for a request-reply interaction in a client-ser-
ver environment. To illustrate how, We sketch a simple protocol that implements
the service using acknowledged datagrams.

First, the server executes LISTEN to indicate that it is prepared to accept in-
coming connections. A common way to implement LISTEN is to make it a block-
ing system call. After executing the primitive, the server process is blocked until
a request for connection appears.

Next, the client process executes CONNECT to establish a connection with the
server. The CONNECT call needs to specify who to connect to, so it might have a
parameter giving the server’s address. The operating system then typically sends
a packet to the peer asking it to connect, as shown by (1) in Fig. 1-18. The client
process is suspended until there is a response.

When the packet arrives at the server, the operating system sees that the pack-
et is requesting a connection. It checks to see if there is a listener, and if so it
unblocks the listener. The server process can then establish the connection with
the ACCEPT call. This sends a response (2) back to the client process to accept the
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Figure 1-18. A simple client-server interaction using acknowledged datagrams.

connection. The arrival of this response then releases the client. At this point the
client and server are both running and they have a connection established.

The obvious analogy between this protocol and real life is a customer (client)
calling a company’s customer service manager. At the start of the day, the service
manager sits next to his telephone in case it rings. Later, a client places a call.
When the manager picks up the phone, the connection is established.

The next step is for the server to execute RECEIVE to prepare to accept the first
request. Normally, the server does this immediately upon being released from the
LISTEN, before the acknowledgement can get back to the client. The RECEIVE call
blocks the server.

Then the client executes SEND to transmit its request (3) followed by the ex-
ecution of RECEIVE to get the reply. The arrival of the request packet at the server
machine unblocks the server so it can handle the request. After it has done the
work, the server uses SEND to return the answer to the client (4). The arrival of
this packet unblocks the client, which can now inspect the answer. If the client
has additional requests, it can make them now.

When the client is done, it executes DISCONNECT to terminate the connection
(5). Usually, an initial DISCONNECT is a blocking call, suspending the client and
sending a packet to the server saying that the connection is no longer needed.
When the server gets the packet, it also issues a DISCONNECT of its own, ack-
nowledging the client and releasing the connection (6). When the server’s packet
gets back to the client machine, the client process is released and the connection is
broken. In a nutshell, this is how connection-oriented communication works.

Of course, life is not so simple. Many things can go wrong here. The timing
can be wrong (e.g., the CONNECT is done before the LISTEN), packets can get lost,
and much more. We will look at these issues in great detail later, but for the
moment, Fig. 1-18 briefly summarizes how client-server communication might
work with acknowledged datagrams so that we can ignore lost packets.

Given that six packets are required to complete this protocol, one might
wonder why a connectionless protocol is not used instead. The answer is that in a
perfect world it could be, in which case only two packets would be needed: one
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for the request and one for the reply. However, in the face of large messages in
either direction (e.g., a megabyte file), transmission errors, and lost packets, the
situation changes. If the reply consisted of hundreds of packets, some of which
could be lost during transmission, how would the client know if some pieces were
missing? How would the client know whether the last packet actually received
was really the last packet sent? Suppose the client wanted a second file. How
could it tell packet 1 from the second file from a lost packet 1 from the first file
that suddenly found its way to the client? In short, in the real world, a simple re-
quest-reply protocol over an unreliable network is often inadequate. In Chap. 3
we will study a variety of protocols in detail that overcome these and other prob-
lems. For the moment, suffice it to say that having a reliable, ordered byte stream
between processes is sometimes very convenient.

1.3.5 The Relationship of Services to Protocols

Services and protocols are distinct concepts. This distinction is so important
that we emphasize it again here. A service is a set of primitives (operations) that
a layer provides to the layer above it. The service defines what operations the
layer is prepared to perform on behalf of its users, but it says nothing at all about
how these operations are implemented. A service relates to an interface between
two layers, with the lower layer being the service provider and the upper layer
being the service user.

A protocol, in contrast, is a set of rules governing the format and meaning of
the packets, or messages that are exchanged by the peer entities within a layer.
Entities use protocols to implement their service definitions. They are free to
change their protocols at will, provided they do not change the service visible to
their users. In this way, the service and the protocol are completely decoupled.
This is a key concept that any network designer should understand well.

To repeat this crucial point, services relate to the interfaces between layers, as
illustrated in Fig. 1-19. In contrast, protocols relate to the packets sent between
peer entities on different machines. It is very important not to confuse the two
concepts.

An analogy with programming languages is worth making. A service is like
an abstract data type or an object in an object-oriented language. It defines opera-
tions that can be performed on an object but does not specify how these operations
are implemented. In contrast, a protocol relates to the implementation of the ser-
vice and as such is not visible to the user of the service.

Many older protocols did not distinguish the service from the protocol. In ef-
fect, a typical layer might have had a service primitive SEND PACKET with the user
providing a pointer to a fully assembled packet. This arrangement meant that all
changes to the protocol were immediately visible to the users. Most network de-
signers now regard such a design as a serious blunder.
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Figure 1-19. The relationship between a service and a protocol.

1.4 REFERENCE MODELS

Now that we have discussed layered networks in the abstract, it is time to look
at some examples. We will discuss two important network architectures: the OSI
reference model and the TCP/IP reference model. Although the protocols associ-
ated with the OSI model are not used any more, the model itself is actually quite
general and still valid, and the features discussed at each layer are still very im-
portant. The TCP/IP model has the opposite properties: the model itself is not of
much use but the protocols are widely used. For this reason we will look at both
of them in detail. Also, sometimes you can learn more from failures than from
successes.

1.4.1 The OSI Reference Model

The OSI model (minus the physical medium) is shown in Fig. 1-20. This
model is based on a proposal developed by the International Standards Organiza-
tion (ISO) as a first step toward international standardization of the protocols used
in the various layers (Day and Zimmermann, 1983). It was revised in 1995 (Day,
1995). The model is called the ISO OSI (Open Systems Interconnection) Ref-
erence Model because it deals with connecting open systems—that is, systems
that are open for communication with other systems. We will just call it the OSI
model for short.

The OSI model has seven layers. The principles that were applied to arrive at
the seven layers can be briefly summarized as follows:

1. A layer should be created where a different abstraction is needed.

2. Each layer should perform a well-defined function.

3. The function of each layer should be chosen with an eye toward
defining internationally standardized protocols.
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Figure 1-20. The OSI reference model.

4. The layer boundaries should be chosen to minimize the information
flow across the interfaces.

5. The number of layers should be large enough that distinct functions
need not be thrown together in the same layer out of necessity and
small enough that the architecture does not become unwieldy.

Below we will discuss each layer of the model in turn, starting at the bottom
layer. Note that the OSI model itself is not a network architecture because it does
not specify the exact services and protocols to be used in each layer. It just tells
what each layer should do. However, ISO has also produced standards for all the
layers, although these are not part of the reference model itself. Each one has
been published as a separate international standard. The model (in part) is widely
used although the associated protocols have been long forgotten.
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The Physical Layer

The physical layer is concerned with transmitting raw bits over a communi-
cation channel. The design issues have to do with making sure that when one side
sends a 1 bit it is received by the other side as a 1 bit, not as a 0 bit. Typical ques-
tions here are what electrical signals should be used to represent a 1 and a 0, how
many nanoseconds a bit lasts, whether transmission may proceed simultaneously
in both directions, how the initial connection is established, how it is torn down
when both sides are finished, how many pins the network connector has, and what
each pin is used for. These design issues largely deal with mechanical, electrical,
and timing interfaces, as well as the physical transmission medium, which lies
below the physical layer.

The Data Link Layer

The main task of the data link layer is to transform a raw transmission facil-
ity into a line that appears free of undetected transmission errors. It does so by
masking the real errors so the network layer does not see them. It accomplishes
this task by having the sender break up the input data into data frames (typically
a few hundred or a few thousand bytes) and transmit the frames sequentially. If
the service is reliable, the receiver confirms correct receipt of each frame by send-
ing back an acknowledgement frame.

Another issue that arises in the data link layer (and most of the higher layers
as well) is how to keep a fast transmitter from drowning a slow receiver in data.
Some traffic regulation mechanism may be needed to let the transmitter know
when the receiver can accept more data.

Broadcast networks have an additional issue in the data link layer: how to
control access to the shared channel. A special sublayer of the data link layer, the
medium access control sublayer, deals with this problem.

The Network Layer

The network layer controls the operation of the subnet. A key design issue is
determining how packets are routed from source to destination. Routes can be
based on static tables that are ‘‘wired into’’ the network and rarely changed, or
more often they can be updated automatically to avoid failed components. They
can also be determined at the start of each conversation, for example, a terminal
session, such as a login to a remote machine. Finally, they can be highly dynam-
ic, being determined anew for each packet to reflect the current network load.

If too many packets are present in the subnet at the same time, they will get in
one another’s way, forming bottlenecks. Handling congestion is also a responsi-
bility of the network layer, in conjunction with higher layers that adapt the load
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they place on the network. More generally, the quality of service provided (delay,
transit time, jitter, etc.) is also a network layer issue.

When a packet has to travel from one network to another to get to its destina-
tion, many problems can arise. The addressing used by the second network may
be different from that used by the first one. The second one may not accept the
packet at all because it is too large. The protocols may differ, and so on. It is up
to the network layer to overcome all these problems to allow heterogeneous net-
works to be interconnected.

In broadcast networks, the routing problem is simple, so the network layer is
often thin or even nonexistent.

The Transport Layer

The basic function of the transport layer is to accept data from above it, split
it up into smaller units if need be, pass these to the network layer, and ensure that
the pieces all arrive correctly at the other end. Furthermore, all this must be done
efficiently and in a way that isolates the upper layers from the inevitable changes
in the hardware technology over the course of time.

The transport layer also determines what type of service to provide to the ses-
sion layer, and, ultimately, to the users of the network. The most popular type of
transport connection is an error-free point-to-point channel that delivers messages
or bytes in the order in which they were sent. However, other possible kinds of
transport service exist, such as the transporting of isolated messages with no guar-
antee about the order of delivery, and the broadcasting of messages to multiple
destinations. The type of service is determined when the connection is esta-
blished. (As an aside, an error-free channel is completely impossible to achieve;
what people really mean by this term is that the error rate is low enough to ignore
in practice.)

The transport layer is a true end-to-end layer; it carries data all the way from
the source to the destination. In other words, a program on the source machine
carries on a conversation with a similar program on the destination machine, using
the message headers and control messages. In the lower layers, each protocols is
between a machine and its immediate neighbors, and not between the ultimate
source and destination machines, which may be separated by many routers. The
difference between layers 1 through 3, which are chained, and layers 4 through 7,
which are end-to-end, is illustrated in Fig. 1-20.

The Session Layer

The session layer allows users on different machines to establish sessions be-
tween them. Sessions offer various services, including dialog control (keeping
track of whose turn it is to transmit), token management (preventing two parties
from attempting the same critical operation simultaneously), and synchronization
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(checkpointing long transmissions to allow them to pick up from where they left
off in the event of a crash and subsequent recovery).

The Presentation Layer

Unlike the lower layers, which are mostly concerned with moving bits around,
the presentation layer is concerned with the syntax and semantics of the infor-
mation transmitted. In order to make it possible for computers with different in-
ternal data representations to communicate, the data structures to be exchanged
can be defined in an abstract way, along with a standard encoding to be used ‘‘on
the wire.’’ The presentation layer manages these abstract data structures and al-
lows higher-level data structures (e.g., banking records) to be defined and
exchanged.

The Application Layer

The application layer contains a variety of protocols that are commonly
needed by users. One widely used application protocol is HTTP (HyperText
Transfer Protocol), which is the basis for the World Wide Web. When a
browser wants a Web page, it sends the name of the page it wants to the server
hosting the page using HTTP. The server then sends the page back. Other appli-
cation protocols are used for file transfer, electronic mail, and network news.

1.4.2 The TCP/IP Reference Model

Let us now turn from the OSI reference model to the reference model used in
the grandparent of all wide area computer networks, the ARPANET, and its suc-
cessor, the worldwide Internet. Although we will give a brief history of the
ARPANET later, it is useful to mention a few key aspects of it now. The
ARPANET was a research network sponsored by the DoD (U.S. Department of
Defense). It eventually connected hundreds of universities and government instal-
lations, using leased telephone lines. When satellite and radio networks were
added later, the existing protocols had trouble interworking with them, so a new
reference architecture was needed. Thus, from nearly the beginning, the ability to
connect multiple networks in a seamless way was one of the major design goals.
This architecture later became known as the TCP/IP Reference Model, after its
two primary protocols. It was first described by Cerf and Kahn (1974), and later
refined and defined as a standard in the Internet community (Braden, 1989). The
design philosophy behind the model is discussed by Clark (1988).

Given the DoD’s worry that some of its precious hosts, routers, and internet-
work gateways might get blown to pieces at a moment’s notice by an attack from
the Soviet Union, another major goal was that the network be able to survive loss
of subnet hardware, without existing conversations being broken off. In other
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words, the DoD wanted connections to remain intact as long as the source and
destination machines were functioning, even if some of the machines or transmis-
sion lines in between were suddenly put out of operation. Furthermore, since ap-
plications with divergent requirements were envisioned, ranging from transferring
files to real-time speech transmission, a flexible architecture was needed.

The Link Layer

All these requirements led to the choice of a packet-switching network based
on a connectionless layer that runs across different networks. The lowest layer in
the model, the link layer describes what links such as serial lines and classic Eth-
ernet must do to meet the needs of this connectionless internet layer. It is not
really a layer at all, in the normal sense of the term, but rather an interface be-
tween hosts and transmission links. Early material on the TCP/IP model has little
to say about it.

The Internet Layer

The internet layer is the linchpin that holds the whole architecture together.
It is shown in Fig. 1-21 as corresponding roughly to the OSI network layer. Its
job is to permit hosts to inject packets into any network and have them travel in-
dependently to the destination (potentially on a different network). They may
even arrive in a completely different order than they were sent, in which case it is
the job of higher layers to rearrange them, if in-order delivery is desired. Note
that ‘‘internet’’ is used here in a generic sense, even though this layer is present in
the Internet.
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Figure 1-21. The TCP/IP reference model.

The analogy here is with the (snail) mail system. A person can drop a se-
quence of international letters into a mailbox in one country, and with a little luck,
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most of them will be delivered to the correct address in the destination country.
The letters will probably travel through one or more international mail gateways
along the way, but this is transparent to the users. Furthermore, that each country
(i.e., each network) has its own stamps, preferred envelope sizes, and delivery
rules is hidden from the users.

The internet layer defines an official packet format and protocol called IP
(Internet Protocol), plus a companion protocol called ICMP (Internet Control
Message Protocol) that helps it function. The job of the internet layer is to
deliver IP packets where they are supposed to go. Packet routing is clearly a
major issue here, as is congestion (though IP has not proven effective at avoiding
congestion).

The Transport Layer

The layer above the internet layer in the TCP/IP model is now usually called
the transport layer. It is designed to allow peer entities on the source and desti-
nation hosts to carry on a conversation, just as in the OSI transport layer. Two
end-to-end transport protocols have been defined here. The first one, TCP
(Transmission Control Protocol), is a reliable connection-oriented protocol that
allows a byte stream originating on one machine to be delivered without error on
any other machine in the internet. It segments the incoming byte stream into
discrete messages and passes each one on to the internet layer. At the destination,
the receiving TCP process reassembles the received messages into the output
stream. TCP also handles flow control to make sure a fast sender cannot swamp a
slow receiver with more messages than it can handle.

The second protocol in this layer, UDP (User Datagram Protocol), is an
unreliable, connectionless protocol for applications that do not want TCP’s
sequencing or flow control and wish to provide their own. It is also widely used
for one-shot, client-server-type request-reply queries and applications in which
prompt delivery is more important than accurate delivery, such as transmitting
speech or video. The relation of IP, TCP, and UDP is shown in Fig. 1-22. Since
the model was developed, IP has been implemented on many other networks.

The Application Layer

The TCP/IP model does not have session or presentation layers. No need for
them was perceived. Instead, applications simply include any session and pres-
entation functions that they require. Experience with the OSI model has proven
this view correct: these layers are of little use to most applications.

On top of the transport layer is the application layer. It contains all the high-
er-level protocols. The early ones included virtual terminal (TELNET), file trans-
fer (FTP), and electronic mail (SMTP). Many other protocols have been added to
these over the years. Some important ones that we will study, shown in Fig. 1-22,
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Figure 1-22. The TCP/IP model with some protocols we will study.

include the Domain Name System (DNS), for mapping host names onto their net-
work addresses, HTTP, the protocol for fetching pages on the World Wide Web,
and RTP, the protocol for delivering real-time media such as voice or movies.

1.4.3 The Model Used in This Book

As mentioned earlier, the strength of the OSI reference model is the model it-
self (minus the presentation and session layers), which has proven to be ex-
ceptionally useful for discussing computer networks. In contrast, the strength of
the TCP/IP reference model is the protocols, which have been widely used for
many years. Since computer scientists like to have their cake and eat it, too, we
will use the hybrid model of Fig. 1-23 as the framework for this book.

5 Application

4 Transport

3 Network

2 Link

1 Physical

Figure 1-23. The reference model used in this book.

This model has five layers, running from the physical layer up through the
link, network and transport layers to the application layer. The physical layer
specifies how to transmit bits across different kinds of media as electrical (or
other analog) signals. The link layer is concerned with how to send finite-length
messages between directly connected computers with specified levels of reliabil-
ity. Ethernet and 802.11 are examples of link layer protocols.
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The network layer deals with how to combine multiple links into networks,
and networks of networks, into internetworks so that we can send packets between
distant computers. This includes the task of finding the path along which to send
the packets. IP is the main example protocol we will study for this layer. The
transport layer strengthens the delivery guarantees of the Network layer, usually
with increased reliability, and provide delivery abstractions, such as a reliable
byte stream, that match the needs of different applications. TCP is an important
example of a transport layer protocol.

Finally, the application layer contains programs that make use of the network.
Many, but not all, networked applications have user interfaces, such as a Web
browser. Our concern, however, is with the portion of the program that uses the
network. This is the HTTP protocol in the case of the Web browser. There are
also important support programs in the application layer, such as the DNS, that
are used by many applications.

Our chapter sequence is based on this model. In this way, we retain the value
of the OSI model for understanding network architectures, but concentrate pri-
marily on protocols that are important in practice, from TCP/IP and related proto-
cols to newer ones such as 802.11, SONET, and Bluetooth.

1.4.4 A Comparison of the OSI and TCP/IP Reference Models

The OSI and TCP/IP reference models have much in common. Both are
based on the concept of a stack of independent protocols. Also, the functionality
of the layers is roughly similar. For example, in both models the layers up
through and including the transport layer are there to provide an end-to-end, net-
work-independent transport service to processes wishing to communicate. These
layers form the transport provider. Again in both models, the layers above tran-
sport are application-oriented users of the transport service.

Despite these fundamental similarities, the two models also have many dif-
ferences. In this section we will focus on the key differences between the two ref-
erence models. It is important to note that we are comparing the reference models
here, not the corresponding protocol stacks. The protocols themselves will be dis-
cussed later. For an entire book comparing and contrasting TCP/IP and OSI, see
Piscitello and Chapin (1993).

Three concepts are central to the OSI model:

1. Services.

2. Interfaces.

3. Protocols.

Probably the biggest contribution of the OSI model is that it makes the distinction
between these three concepts explicit. Each layer performs some services for the



50 INTRODUCTION CHAP. 1

layer above it. The service definition tells what the layer does, not how entities
above it access it or how the layer works. It defines the layer’s semantics.

A layer’s interface tells the processes above it how to access it. It specifies
what the parameters are and what results to expect. It, too, says nothing about
how the layer works inside.

Finally, the peer protocols used in a layer are the layer’s own business. It can
use any protocols it wants to, as long as it gets the job done (i.e., provides the
offered services). It can also change them at will without affecting software in
higher layers.

These ideas fit very nicely with modern ideas about object-oriented pro-
gramming. An object, like a layer, has a set of methods (operations) that proc-
esses outside the object can invoke. The semantics of these methods define the set
of services that the object offers. The methods’ parameters and results form the
object’s interface. The code internal to the object is its protocol and is not visible
or of any concern outside the object.

The TCP/IP model did not originally clearly distinguish between services, in-
terfaces, and protocols, although people have tried to retrofit it after the fact to
make it more OSI-like. For example, the only real services offered by the internet
layer are SEND IP PACKET and RECEIVE IP PACKET. As a consequence, the proto-
cols in the OSI model are better hidden than in the TCP/IP model and can be
replaced relatively easily as the technology changes. Being able to make such
changes transparently is one of the main purposes of having layered protocols in
the first place.

The OSI reference model was devised before the corresponding protocols
were invented. This ordering meant that the model was not biased toward one
particular set of protocols, a fact that made it quite general. The downside of this
ordering was that the designers did not have much experience with the subject and
did not have a good idea of which functionality to put in which layer.

For example, the data link layer originally dealt only with point-to-point net-
works. When broadcast networks came around, a new sublayer had to be hacked
into the model. Furthermore, when people started to build real networks using the
OSI model and existing protocols, it was discovered that these networks did not
match the required service specifications (wonder of wonders), so convergence
sublayers had to be grafted onto the model to provide a place for papering over
the differences. Finally, the committee originally expected that each country
would have one network, run by the government and using the OSI protocols, so
no thought was given to internetworking. To make a long story short, things did
not turn out that way.

With TCP/IP the reverse was true: the protocols came first, and the model was
really just a description of the existing protocols. There was no problem with the
protocols fitting the model. They fit perfectly. The only trouble was that the
model did not fit any other protocol stacks. Consequently, it was not especially
useful for describing other, non-TCP/IP networks.
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Turning from philosophical matters to more specific ones, an obvious dif-
ference between the two models is the number of layers: the OSI model has seven
layers and the TCP/IP model has four. Both have (inter)network, transport, and
application layers, but the other layers are different.

Another difference is in the area of connectionless versus connection-oriented
communication. The OSI model supports both connectionless and connection-
oriented communication in the network layer, but only connection-oriented com-
munication in the transport layer, where it counts (because the transport service is
visible to the users). The TCP/IP model supports only one mode in the network
layer (connectionless) but both in the transport layer, giving the users a choice.
This choice is especially important for simple request-response protocols.

1.4.5 A Critique of the OSI Model and Protocols

Neither the OSI model and its protocols nor the TCP/IP model and its proto-
cols are perfect. Quite a bit of criticism can be, and has been, directed at both of
them. In this section and the next one, we will look at some of these criticisms.
We will begin with OSI and examine TCP/IP afterward.

At the time the second edition of this book was published (1989), it appeared
to many experts in the field that the OSI model and its protocols were going to
take over the world and push everything else out of their way. This did not hap-
pen. Why? A look back at some of the reasons may be useful. They can be sum-
marized as:

1. Bad timing.

2. Bad technology.

3. Bad implementations.

4. Bad politics.

Bad Timing

First let us look at reason one: bad timing. The time at which a standard is
established is absolutely critical to its success. David Clark of M.I.T. has a theory
of standards that he calls the apocalypse of the two elephants, which is illustrated
in Fig. 1-24.

This figure shows the amount of activity surrounding a new subject. When
the subject is first discovered, there is a burst of research activity in the form of
discussions, papers, and meetings. After a while this activity subsides, corpora-
tions discover the subject, and the billion-dollar wave of investment hits.

It is essential that the standards be written in the trough in between the two
‘‘elephants.’’ If they are written too early (before the research results are well
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Figure 1-24. The apocalypse of the two elephants.

established), the subject may still be poorly understood; the result is a bad stan-
dard. If they are written too late, so many companies may have already made ma-
jor investments in different ways of doing things that the standards are effectively
ignored. If the interval between the two elephants is very short (because everyone
is in a hurry to get started), the people developing the standards may get crushed.

It now appears that the standard OSI protocols got crushed. The competing
TCP/IP protocols were already in widespread use by research universities by the
time the OSI protocols appeared. While the billion-dollar wave of investment had
not yet hit, the academic market was large enough that many vendors had begun
cautiously offering TCP/IP products. When OSI came around, they did not want
to support a second protocol stack until they were forced to, so there were no ini-
tial offerings. With every company waiting for every other company to go first,
no company went first and OSI never happened.

Bad Technology

The second reason that OSI never caught on is that both the model and the
protocols are flawed. The choice of seven layers was more political than techni-
cal, and two of the layers (session and presentation) are nearly empty, whereas
two other ones (data link and network) are overfull.

The OSI model, along with its associated service definitions and protocols, is
extraordinarily complex. When piled up, the printed standards occupy a signifi-
cant fraction of a meter of paper. They are also difficult to implement and ineffi-
cient in operation. In this context, a riddle posed by Paul Mockapetris and cited
by Rose (1993) comes to mind:

Q: What do you get when you cross a mobster with an international standard?
A: Someone who makes you an offer you can’t understand.
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In addition to being incomprehensible, another problem with OSI is that some
functions, such as addressing, flow control, and error control, reappear again and
again in each layer. Saltzer et al. (1984), for example, have pointed out that to be
effective, error control must be done in the highest layer, so that repeating it over
and over in each of the lower layers is often unnecessary and inefficient.

Bad Implementations

Given the enormous complexity of the model and the protocols, it will come
as no surprise that the initial implementations were huge, unwieldy, and slow.
Everyone who tried them got burned. It did not take long for people to associate
‘‘OSI’’ with ‘‘poor quality.’’ Although the products improved in the course of
time, the image stuck.

In contrast, one of the first implementations of TCP/IP was part of Berkeley
UNIX and was quite good (not to mention, free). People began using it quickly,
which led to a large user community, which led to improvements, which led to an
even larger community. Here the spiral was upward instead of downward.

Bad Politics

On account of the initial implementation, many people, especially in
academia, thought of TCP/IP as part of UNIX, and UNIX in the 1980s in academia
was not unlike parenthood (then incorrectly called motherhood) and apple pie.

OSI, on the other hand, was widely thought to be the creature of the European
telecommunication ministries, the European Community, and later the U.S. Gov-
ernment. This belief was only partly true, but the very idea of a bunch of govern-
ment bureaucrats trying to shove a technically inferior standard down the throats
of the poor researchers and programmers down in the trenches actually develop-
ing computer networks did not aid OSI’s cause. Some people viewed this de-
velopment in the same light as IBM announcing in the 1960s that PL/I was the
language of the future, or the DoD correcting this later by announcing that it was
actually Ada.

1.4.6 A Critique of the TCP/IP Reference Model

The TCP/IP model and protocols have their problems too. First, the model
does not clearly distinguish the concepts of services, interfaces, and protocols.
Good software engineering practice requires differentiating between the specif-
ication and the implementation, something that OSI does very carefully, but
TCP/IP does not. Consequently, the TCP/IP model is not much of a guide for de-
signing new networks using new technologies.

Second, the TCP/IP model is not at all general and is poorly suited to describ-
ing any protocol stack other than TCP/IP. Trying to use the TCP/IP model to
describe Bluetooth, for example, is completely impossible.
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Third, the link layer is not really a layer at all in the normal sense of the term
as used in the context of layered protocols. It is an interface (between the network
and data link layers). The distinction between an interface and a layer is crucial,
and one should not be sloppy about it.

Fourth, the TCP/IP model does not distinguish between the physical and data
link layers. These are completely different. The physical layer has to do with the
transmission characteristics of copper wire, fiber optics, and wireless communica-
tion. The data link layer’s job is to delimit the start and end of frames and get
them from one side to the other with the desired degree of reliability. A proper
model should include both as separate layers. The TCP/IP model does not do this.

Finally, although the IP and TCP protocols were carefully thought out and
well implemented, many of the other protocols were ad hoc, generally produced
by a couple of graduate students hacking away until they got tired. The protocol
implementations were then distributed free, which resulted in their becoming
widely used, deeply entrenched, and thus hard to replace. Some of them are a bit
of an embarrassment now. The virtual terminal protocol, TELNET, for example,
was designed for a ten-character-per-second mechanical Teletype terminal. It
knows nothing of graphical user interfaces and mice. Nevertheless, it is still in
use some 30 years later.

1.5 EXAMPLE NETWORKS

The subject of computer networking covers many different kinds of networks,
large and small, well known and less well known. They have different goals,
scales, and technologies. In the following sections, we will look at some ex-
amples, to get an idea of the variety one finds in the area of computer networking.

We will start with the Internet, probably the best known network, and look at
its history, evolution, and technology. Then we will consider the mobile phone
network. Technically, it is quite different from the Internet, contrasting nicely
with it. Next we will introduce IEEE 802.11, the dominant standard for wireless
LANs. Finally, we will look at RFID and sensor networks, technologies that ex-
tend the reach of the network to include the physical world and everyday objects.

1.5.1 The Internet

The Internet is not really a network at all, but a vast collection of different
networks that use certain common protocols and provide certain common ser-
vices. It is an unusual system in that it was not planned by anyone and is not con-
trolled by anyone. To better understand it, let us start from the beginning and see
how it has developed and why. For a wonderful history of the Internet, John
Naughton’s (2000) book is highly recommended. It is one of those rare books that
is not only fun to read, but also has 20 pages of ibid.’s and op. cit.’s for the serious
historian. Some of the material in this section is based on this book.


